
SplAdder Documentation
Release 3.0.2

Andre Kahles

Feb 07, 2023

Contents:

1 Installation 3
1.1 Install from PyPi . 3
1.2 Install from source . 3

2 General information 5
2.1 The SplAdder directory setup . 5
2.2 SplAdder is a heuristic . 5
2.3 Default parameters . 6
2.4 Working with large datasets . 6

3 Run modes 7
3.1 The build mode . 7

3.1.1 1 Graph construction . 8
3.1.2 2 Graph augmentation . 8
3.1.3 3 Graph quantification . 11
3.1.4 4 Event detection . 11

3.2 The test mode . 13
3.3 The viz mode . 14

3.3.1 General organisation . 14
3.3.2 Data tracks . 15
3.3.3 Order of multiple tracks . 16
3.3.4 Plotting range . 16
3.3.5 Output names and formats . 17
3.3.6 Plotting test results . 17

4 Use on large cohorts 19
4.1 1. Single graphs . 19
4.2 2. Merged graph . 20
4.3 3. Quantification . 20
4.4 4. Event Calling . 21
4.5 General Notes . 21

5 File formats 23
5.1 Input Files – build mode . 23

5.1.1 Annotation Files . 23
5.1.2 Alignment Files . 23

5.2 Output Files – build mode . 23

i

5.2.1 Annotation Files in GFF3 Format . 24
5.2.2 Event Files in HDF5 Format . 24
5.2.3 Event Files in TXT Format . 28
5.2.4 Files in PICKLE Format . 28

5.3 Output Files – test mode . 28
5.3.1 Files in TXT Format . 28
5.3.2 Diagnose Plots . 29
5.3.3 Files in PICKLE Format . 30

6 Indices and tables 31

ii

SplAdder Documentation, Release 3.0.2

Welcome to the documentation of SplAdder. Here you will learn more about the details of the SplAdder pipeline, how
to apply it to your data, how ^to choose parameters well suited for the kind of question you would like to answer, or
how to use and visualize the output data. SplAdder is continuously improved and currently in alpha state. It has been
used and tested in context of various research projects of varying scale, ranging from a few samples of A. thaliana to
thousands of human samples.

To install the latest release, please use:

pip install spladder

Further information about requirements can be found in the Installation notes.

Before diving deeper into the documentation, we suggest to read through the General information first.

Contents: 1

SplAdder Documentation, Release 3.0.2

2 Contents:

CHAPTER 1

Installation

There are several ways to obtain SplAdder. You can directly install it from the Python package index using pip or you
can clone the git repository and set it up yourself.

1.1 Install from PyPi

The installation from Pypi is very straightforward. You can install the latest version of SplAdder using pip:

pip install spladder

If you would like to get a specific version, you can do:

pip install spladder=2.2.0

1.2 Install from source

If you would like to get the latest changes available on GitHub, you can clone the repository:

git clone https://github.com/ratschlab/spladder.git

This will create a directory named spladder inside your current directory. You can then install SplAdder locally by
first changing into the spladder directory and then typing:

python setup.py install

If you are interested in using a specific branch, e.g., development, you would need to change into that branch first,
before you install. You can achieve this with:

git checkout development
python setup.py install

3

SplAdder Documentation, Release 3.0.2

4 Chapter 1. Installation

CHAPTER 2

General information

In the following, we provide some general information on how the setup of SplAdder works in principle and mention
several useful things to keep in mind when using the software.

2.1 The SplAdder directory setup

The general purpose of SplAdder is to build and quantify augmented splicing graphs from RNA-Sequencing data and
to utilize them for the detection for alternative splicing events. To achieve this, SplAdder operates on a single project
at a time, where a project is characterized by a single shared output (or project) directory. All data of subsequent steps
will be written to that directory and a certain substructure will directly be created by SplAdder.

SplAdder has different run modes that reflect the different steps of a typical analysis pipeline:

build mode for constructing splicing graphs from RNA-Seq data and extracting alternative events

test mode for the differential analysis between samples

viz mode for the visualization of splicing graphs and alternative events

All of these modes will operate on the same output directory. Please note, that the build mode always has to precede
the testing and viz modes, as this creates the splicing graph structures the latter modes operate on.

Please have a look at the SplAdder run modes page for further information.

2.2 SplAdder is a heuristic

We would like to reiterate here that SplAdder is a heuristic approach, that employs a system of empirical filter rules
on RNA-Seq data to extend a splicing graph pre-defined by a given annotation. Due to this heuristic nature, there is a
list of things one should keep in mind when working with the software:

• Although the algorithm is deterministic, it is sensitive to the order of input data. Especially when you are
working with many input samples and integrate their information to generate a single splicing graph, the order

5

SplAdder Documentation, Release 3.0.2

of input files might influence the outcome. However, in most cases the generated splicing graphs are robust
against changes of the order of the input.

• Depending on the annotation file that you are using, some annotated gene regions might be subject to filtering.
SplAdder will automatically ignore all introns in the input data that could be assigned to more than one gene in
the annotation. (This decision is strand-specific, that is both genes and the intron need to be on the same strand.)

• As SplAdder will sample all possible events from the graph, there can be a certain redundancy in the events
(although all events are unique as a whole). For instance, if there are 3 possible donors paired with an acceptor
in a gene on the positive strand, SplAdder will output all three possible pairs of alternative 3 prime splice site
events.

2.3 Default parameters

For most of the settings available in SplAdder default parameters are assumed. In a basic call in build-mode
(spladder build), SplAdder requires at least three parameters: the annotation file (via -a), a comma-separated
list of alignment files (via -b) and an output directory where results files are stored (via -o):

spladder build -o output_directory -b bam_file -a annotation_file

This will run SplAdder in its default configuration, which consists of the following steps:

• transform annotation into splicing graph representation

• generate an augmented splicing graph for each alignment file by inferring and adding the following elements:

– insert intron retentions

– insert cassette exons

– insert new intron edges

• merge the augmented splicing graphs into a common splicing graph

• extract the following alternative splicing events:

– exon skip

– intron retention

– alternative 3’/5’ splice site

– multiple exon skip

– mutually exclusive exons

• quantify all alternative splicing events on each of the provided alignment files

2.4 Working with large datasets

SplAdder can be scaled to larger cohorts and has been run successfully on studies including as many as 10000 samples.
Working on such large datasets still needs some consideration and planning and might require to call individual steps
differently than how it is done for smaller sample sets.

We provide more detailed information in the section describing how to handle Large cohorts.

6 Chapter 2. General information

CHAPTER 3

Run modes

SplAdder has different run modes that reflect the different steps of a typical analysis pipeline:

build mode for constructing splicing graphs from RNA-Seq data and extracting alternative events

test mode for the differential analysis between samples

viz mode for the visualization of splicing graphs and alternative events

In the following, we will give a short overview of the different modes and how to use them. Special use cases, for
instance the handling of large sample cohorts, will be discussed as a separate topic.

3.1 The build mode

The build mode is the basic run mode in SplAdder. It is used to construct splicing graphs and to extract alternative
splicing events.

To display all available options for build, one can simply type:

spladder build --help

This first step of any SplAdder pipeline consists of several main phases (some of which can be omitted) :

1 Graph construction This is the very initial phase. It parses the given annotation file and summarizes all transcripts
of a gene into a splicing graph. This graph will be the basis for all further steps in the workflow.

2 Graph augmentation Given at least one alignment file, the splicing graph of each gene is augmented with new
introns and exon segments that were detected in the alignment file. There are different ways how a more than
one input alignment files can be combined into final splicing graphs. At the end of this phase, each gene contains
an augmented graph that carries not only annotated splice connections but also any novel connections found in
the data. Depending on the chosen confidence level, this graph will have a higher or lower density.

3 Graph quantification Once a graph is constructed, all nodes and edges (exons and introns, respectively) in the graph
can be quantified using at least one input alignment file. The quantification values can then be used subsequently
to quantify splicing events and to compute percent spliced in (PSI) values.

7

SplAdder Documentation, Release 3.0.2

4 Event detection Based on the splicing graph of each gene, SplAdder can detect different types of alternative splicing
events: exon skipping, intron retention, alternative 3’ splice sites, alternative 5’ splice sites, mutual exclusive
exons and multiple (coordinated) exon skips. Each event can be quantified using the graph quantifications from
the previous step.

In the following, we will provide more in-depth information for each of the phases and describe how the result can be
influenced through the choice of command line parameters.

3.1.1 1 Graph construction

This phase runs implicitly before any other phase. We just describe it here for completeness, but in general there is no
reason to run this phase only by itself. What it does in the background, though, is to transform the given annotation
file:

spladder build .. --annotation annotation.gtf ...

into a SplAdder specific format, containing all transcript information and the initial splicing graphs per gene. These
information will be stored at the same location as annotation.gtf and is identified by the suffix .pickle. The
resulting file in our example would be named annotation.gtf.pickle. Depending on the settings, additional
files might be created, for instance to mask out certain regions from the annotation. This step is only performed once
per annotation file. The summary files will then be re-used by any subsequent SplAdder run using the same annotation
file.

The user can influence how SplAdder uses the annotation information in certain situations of ambiguity. However,
none of these options is set by default.

In cases of annotations overlapping on the same strand, one can remove the annotation on three different levels.

If two exons of different genes overlap on the same strand, one can remove them with:

spladder build ... --filter-overlap-exons ...

If two transcripts of different genes overlap on the same strand, one can remove them with:

spladder build ... --filter-overlap-transcripts ...

If two genes overlap on the same strand:

spladder build ... --filter-overlap-genes ...

3.1.2 2 Graph augmentation

The augmentation phase brings together alignment file and splicing graphs. Let’s assume that you are given an align-
ment file alignment.bam (which should also have an index alignment.bam.bai) and an annotation file in
GTF format annotation.gtf. You can the simply invoke:

spladder build --bams alignment.bam \
--annotation annotation.gtf \
--outdir spladder_out

All three parameters are mandatory for a SplAdder run in build mode. Due to the default values of other parameters,
this will carry out a full run of all phases. We will describe in the following, which parameters you can change to
either only run this phase or to adapt how the splicing graph will be augmented.

Multiple alignment files can be provided using comma-separated notation:

8 Chapter 3. Run modes

SplAdder Documentation, Release 3.0.2

spladder build --bams alignment1.bam,alignment2.bam,...

Alternatively, a text file, e.g., alignment_list.txt, can be provided. This should contain the absolute path to
one alignment file per line. The filename has to end in .txt. SplAdder can then be invoked with:

spladder build --bams alignment_list.txt

In its latest version, SplAdder also supports (on an experimental level) CRAM compressed alignment files as input. If
you are using such files, in addition to the input filenames of the alignment files, also the path to the indexed reference
sequence used for compression is required:

spladder build --bams alignment1.cram,alignment2.cram,... --reference path/to/cram_
→˓ref.fa

Alignment By default, SplAdder only uses primary alignments (in SAM/BAM the ones not carrying the 256 bit-flag).
This can be changed by also allowing for secondary alignments to be used:

spladder build ... --no-primary-only ...

The quality of an alignment is partially determined by the number of mismatches it carries. The default tag in
SAM/BAM for this is the NM:i: tag. To let SplAdder use a different tag, such as Nm:i:, one can use:

spladder build ... --set-mm-tag Nm ...

Alternatively, one can also force SplAdder not to use any mismatch information (this is not recommended):

spladder build ... --ignore-mismatches ...

Augmentation Different types of augmentations are possible. The majority of them is switched on by default. For
instance the insertion of new intron retentions is always carried out. To switch this step off, one would add:

spladder build ... --no-insert-ir ...

Similarly, the addition of novel cassette exons is also on by default. To switch this step off, one would add:

spladder build ... --no-insert-es ...

Also the addition of novel intron edges is switched on by default. To switch it off, one would add:

spladder build ... --no-insert-ni ...

On the other hand, additional steps for graph cleaning are not switched on by default. For instance the removal
of exons shorter than 9nt from the graph can be add with:

spladder build ... --remove-se ...

Lastly, as SplAdder is a heuristic framework, the addition of novel nodes and edges to the graph depends on the
input order of new introns and on the current state of the graph (that is the nodes and edges already present). To
increase sensitivity, the addition of new intron edges is iterated a certain number of times (per default 5 times).
One can increase the number if iterations, for instance to 10, by:

spladder build ... --iterations 10 ...

Confidence The confidence level of a SplAdder run determines how strongly input alignments are filtered before new
nodes and edges are added to the splicing graphs. In general, there are four confidence levels, with confidence
increasing from 0 to 3. The default level is 3 and applies the highest level of filtering. To adapt this choice, e.g.,
to confidence level 2, one can use:

3.1. The build mode 9

SplAdder Documentation, Release 3.0.2

spladder build ... --confidence 2 ...

The read filter criteria are dependent on the read length. Here a short overview of the criteria for each of the
levels:

Level Criteria Value
3 Maximum number of mismatches 0
3 Minimum number of alignments 2
3 Minimum anchor length ceil(0.25 * readlength)
3 Maximum intron length 350000

2 Maximum number of mismatches max(1, floor(0.01 * readlength)
2 Minimum number of alignments 2
2 Minimum anchor length ceil(0.20 * readlength)
2 Maximum intron length 350000

1 Maximum number of mismatches max(1, floor(0.02 * readlength)
1 Minimum number of alignments 2
1 Minimum anchor length ceil(0.15 * readlength)
1 Maximum intron length 350000

0 Maximum number of mismatches max(2, floor(0.03 * readlength)
0 Minimum number of alignments 1
0 Minimum anchor length ceil(0.10 * readlength)
0 Maximum intron length 350000

In the above table, the maximum number of mismatches is used to remove reads that have low quality alignments,
the minimum number of alignments is the number of split/spliced alignments necessary to confirm a new intron
edge for being taken into the graph, the minimum achor length is the shortest overlap to an exon segment that
a split/spliced alignment needs to have to be counted towards confirming an intron, and the maximum intron
length is the upper threshold for new introns to be counted.

Merging As SplAdder can be run with multiple alignment files as input, there are several ways on how these files
can be combined into forming augmented splicing graphs. This behavior is controlled with the setting of the
merging strategy using --merge-strat.

The first way of merging is to generate a separate augmented splicing graph per given input alignment file. This
strategy is called single and can be invoked as follows:

spladder build ... --merge-strat single ...

The second (and default) way of merging is to create a single splicing graph per input file and then merge all
graphs into a joint single graph. (This happens for every gene independently.) This strategy is called merge
graphs and can be invoked as follows:

spladder build ... --merge-strat merge_graphs ...

A third way of merging is to treat all input alignment files as technical replicates and directly form a splicing
graph using all reads. (This makes a difference especially for the count thresholds.) This strategy is called merge
bams and can be invoked as follows:

spladder build ... --merge-strat merge_bams ...

The fourth way of merging is a combination of merge_bams and merge_graphs. In this setting, both steps

10 Chapter 3. Run modes

SplAdder Documentation, Release 3.0.2

are performed and both resulting graphs are integrated into a joint graph. The idea behind this setting is to
generate maximum sensitivity. However, the improvement is in general marginal and we would not advise to
use this setting in general. If you would like to try it nevertheless, you can do so with:

spladder build ... --merge_strat merge_all ...

Validation SplAdder has the option to validate edges in the graph. This is relevant when working on larger cohorts
of samples. In this filtering step an edge is removed if it is not present in the initial annotation and is supported
in less than a certain number of input samples. By default this threshold is 10 or the number of input samples in
cases where less than 10 samples are given. The threshold can be adapted using --validate-sg-count.
If nodes get orphaned through the pruning process, they will be also removed from the graph. Following an
example that removes all edges from the graph that are present in less than 5 input samples:

spladder build ... --validate-sg --validate-sg-count 5 ...

3.1.3 3 Graph quantification

In the step of graph quantification, the augmented graph is evaluated again against all given input alignment files, to
determine edge and node weights based on the respective expression. If alternative splicing events are to be extracted
(next step), this step is carried out automatically. If the user decided not to extract alternative splicing events (explained
in the next section), but the graph should be quantified anyways, this can be achieved with:

spladder build ... --quantify-graph ...

Especially for larger cohorts, it can be challenging to process through all the alignment files for quantification. (We
will provide more detailed explanations for this scenario in Working with large cohorts.) Here, we will just mention,
that the quantification step can be invoked in different modes, called qmodes. Let us assume, that two alignment files
were provided to SplAdder, aligment1.bam and alignment2.bam. Then the default is that all files processed
sequentially. This quantification mode is called all and (despite being used implicitly per default), can also be
explicitly set with:

spladder build ... --bams alignment1.bam,alignment2.bam \
--qmode all ...

As an alternative, one can also provide a single alignment file at a time to SplAdder. This strategy is called single
and can be used to parallelize SplAdder processes across alignment files. It can be invoked via:

spladder build .. --bams alignment1.bam --qmode single ...
spladder build .. --bams alignment2.bam --qmode single ...

The single command always needs to be accompanied by an additional run of SplAdder, that integrates the quan-
tification files for the single alignment files into a joint data structure. For this, all alignment files are provided as input
and the quantification mode collect is chosen:

spladder build .. --bams alignment1.bam,alignment2.bam \
--qmode collect ...

3.1.4 4 Event detection

In this last phase of the build mode, the graphs are used for the extraction of alternative splicing events. Event
extraction is performed per default. The user can choose to omit this step entirely (for instance to carry it out at a later
point in time). This is done via:

3.1. The build mode 11

SplAdder Documentation, Release 3.0.2

spladder build ... --no-extract-ase ...

Event extraction SplAdder can currently extract 6 different types of alternative splicing events:

• exon skips (exon_skip)

• intron retentions (intron_retention)

• alternative 3’ splice sites (alt_3prime)

• alternative 5’ splice sites (alt_5prime)

• mutually exclusive exons (mutex_exons)

• multiple (coordinated) exons skips (mult_exon_skip)

Per default all events of all types are extracted from the graph. To specify a single type or a subset of types
(e.g., exon skips and mutually exclusive exons only), the user can specify the short names of the event types (as
shown in parentheses above) as follows:

spladder build ... --event-types exon_skip,mutex_exons ...

In some cases (for instance when integrating hundreds of alignment samples), the splicing graphs can grow very
complex. To limit the running time, an upper bound for the maximum number of edges in the splicing graph of
a gene to be used for event extraction is set. This threshold is 500 per default. To adapt this threshold, e.g., to
250, the user can specify:

spladder build ... --ase-edge-limit 250 ...

Event verification Similar to graph validation, SplAdder also performs a step of splice event verification. Only
verified events are reported as confident to the user. There are two possibilities how the validity of a confident
event is established.

The classical way for event verification is to use heuristic criteria based on the RNA-Seq evidence provided
to SplAdder. Depending on the alternative event type, as different set of criteria is used. The tables below
summarize the criteria currently in use for the different event types. The order and numbering of criteria is the
same as used in the output files of SplAdder.

Multiple Exon Skip
0 exon coordinates are valid (>= 0 && start < stop && non-overlapping) & skipped exon coverage

>= FACTOR * mean(pre, after)
1 inclusion count first intron >= threshold
2 inclusion count last intron >= threshold
3 avg inclusion count inner exons >= threshold
4 skip count >= threshold

Intron Retention
0 counts meet criteria for min_retention_cov, min_retention_region and min_retetion_rel_cov
1 min_non_retention_count >= threshold

Exon Skip
0 coverage of skipped exon is >= than FACTOR * mean(pre, after)
1 inclusion count of first intron >= threshold
2 inclusion count of second intron >= threshold
3 skip count of exon >= threshold

12 Chapter 3. Run modes

SplAdder Documentation, Release 3.0.2

Alternative 3/5 Prime
0 coverage of diff region is at least FACTOR * coverage constant region
1 both alternative introns are >= threshold

Mutually Exclusive Exons
0 coverage of first alt exon is >= than FACTOR times average of pre and after
1 coverage of second alt exon is >= than FACTOR times average of pre and after
2 both introns neighboring first alt exon are confirmed >= threshold
3 both introns neighboring second alt exon are confirmed >= threshold

In addition to the classical, RNA-Seq evidence based mode, since version 2.5 it is also allowed to use the
provided annotation to verify an existing event. In this mode each one of the criteria listed above is replaced
with a lookup in the provided annotation. That is, if an intron is already annotated, it will be used for event
verification irrespective of any RNA-Seq expression support. This mode is especially useful for single sample
analysis, where a complete isoform switch might have occurred and only the alternative event path is supported
by reads but not the annotated one. In this case, the event is still reported. This mode is switched off by default
and can be activated via:

spladder build ... -use-anno-support ...

3.2 The test mode

This SplAdder mode is for differentially testing the usage of alternative event between two groups of samples. A
prerequisite for this is that all samples that are involved in testing have been subjected to a joint analysis in the build
mode. However, not the full set of samples collected in the build mode has to be subjected to testing, but subsets of
samples can be used instead.

It is recommended that for each sample condition to be tested (e.g., wild type and some mutant), the number of
available replicates is at least three. Further, the mean-variance relationship for intron counts are estimated on the set
of tested events. It the number of events to be tested becomes too small, then this estimate becomes unstable and might
result in an error.

For the invocation of the testing mode, three different input parameters are mandatory:

spladder test --conditionA aligmmentA1.bam,alignmentA2.bam \
--conditionB alignmentB1.bam,alignmentB2.bam \
--outdir spladder_out

In detail, these are the two lists of alignment files representing the samples for conditions A and B, respectively, as well
as the SplAdder output directory. This is the same output directory, as has been used for the build mode. Analog to
the way a list of alignments can be provided in build mode, also in test mode the comma-separated file list can be
substituted with a file containing the paths to the respective files:

spladder test --conditionA alignmentsA_list.txt \
--conditionB alignmentsB_list.txt \
--outdir spladder_out

By default all event types will be subjected to testing (if they were extracted from the graph prior to testing). If only
a specific event type or subset of types should be tested, e.g., exon skips and mutual exclusive exons, the same syntax
as in build mode can be applied:

3.2. The test mode 13

SplAdder Documentation, Release 3.0.2

spladder test ... --event-types exon_skip,mutex_exons ...

If you have built the SplAdder graphs using non-default setting, for instance an adapted confidence level of 2, these
parameters also need to be passed in test mode, so the correct input files are chosen from the project directory:

spladder test ... --confidence 2 ...

By default expression outliers are removed in a preprocessing step. If you would like to keep genes that show outlier
expression, this behavior can be disabled with:

spladder test ... --no-cap-exp-outliers

Similarly, you can also switch on the capping of splice outliers, which is not done by default:

spladder test ... --cap-outliers ...

Sometimes it is useful to assign labels to the two groups being tested, especially is multiple different groupings are
analyzed. Groups A and B can be assigned arbitrary labels, such as Mutant and Wildtype, using:

spladder test ... --labelA Mutant --labelB Wildtype

In addition, you can also provide a separate tag that will be appended to the output directory name. This is useful,
if several rounds of testing or different parameter choices are explored. To tag the output directory with Round1 you
would use:

spladder test ... --out-tag Round1 ...

The test mode is capable of generating several summary plots for diagnosing issues and getting a better understand-
ing of the data being tested. Per default, the plots are generated in png format, but other formats such as pdf or eps
can be chosen as well. Per default, the diagnose plots are switched off. To generate them, for instance in pdf format,
you would use:

spladder test ... --diagnose-plots --plot-format pdf ...

If several compute cores are available, the computation of the testing can be accelerated by allowing parallel access.
If 4 cores should be used:

spladder test ... --parallel 4 ...

3.3 The viz mode

The purpose of this mode is to generate visual overviews of splicing graphs and events and the associated coverage
available in the underlying RNA-Seq samples.

3.3.1 General organisation

In general, the plots are organized as individual tracks, which can be stacked to visualize several sources of information
jointly. Thereby, the order, number and repetition of tracks can be defined by the user. This allows for the generation
of simple overview plots as well as for more complex multi-track visualizations. If more than one track is present, all
tracks share the same joint coordinate system on the x axis.

To determine which genomic range is plotted, all elements provided in --tracks are considered and a region in-
cluding all of them is generated. This logic can be overruled using the --range parameter to specify a specific range.

14 Chapter 3. Run modes

SplAdder Documentation, Release 3.0.2

However, there are also data track elements that do not necessarily carry any range information (such as a coverage
track). In this case the --range argument would be required. In the following, we will first explain the definition of
tracks in more detail and will then provide some information on how to define a specific range.

3.3.2 Data tracks

This parameter is concerned with defining which data tracks should be visualized in the plot and in which order. The
general syntax for specific a data track is as follows:

spladder viz --track TYPE [TYPE_INFO [TYPE_INFO ...]]

Here, TYPE describes one of the following possibilities (where TYPE_INFO is specifically defined for each type):

• splicegraph shows the structure of the splicing graph for each of the given genes. If no TYPE_INFO is provided,
the gene(s) from the --range argument are used. To plot the splicing graph for gene with ID gene1, one would
use:

spladder viz --track splicegraph gene1

• transcript shows the structure of all annotated transcripts for each of the given genes. If not TYPE_INFO is
provided, the gene(s) from the --range argument are used. To plot the splicing graph for gene with ID gene1,
one would use:

spladder viz --track transcript gene1

• event shows the structure of the given events, where each event can be specified by its ID. For instance to show
the structure of events exon_skip_2 and alt_3prime_5, one can use:

spladder viz --track event exon_skip_2 alt_3prime_5

If not a specific event ID is given but only the event type, all events of that type for the genes given in --range
are shown. So to show all exon_skip events of gene gene1, the correct call would be:

spladder viz --range gene gene1 --track event exon_skip

If all events of a given gene should be shown, then one can use the special keyword any to achieve this:

spladder viz --range gene gene1 --track event any

• coverage shows the coverage information in the given range for all samples provided in TYPE_INFO. To show
coverage for samples alignment1.bam and alignment2.bam, one would use:

spladder viz --track coverage alignment1.bam alignment2.bam

If the coverages of both files should be added up, one can also define them as a group:

spladder viz --track coverage alignment1.bam,alignment2.bam

Sometimes it is useful to assign descriptive labels to single or multiple samples. Given the samples align-
ment1.bam - alignment4.bam, which can be separated into groups wildtype and mutant, respectively, one can
use these labels in the plot as follows:

spladder viz --track coverage \
wildtype:alignment1.bam,alignment2.bam \
mutant:alignment3.bam,alignment4.bam

3.3. The viz mode 15

SplAdder Documentation, Release 3.0.2

• segments shows the coverage information in the given range as internally used by SplAdder in the splicing
graph, quantifying each exonic segment. The usage is analog to --coverage.

3.3.3 Order of multiple tracks

The order of the tracks is determined by the order they are provided in at the command line. This is true for both the
order of keywords within a single --track parameter, as well as for the order of multiple --track parameters.

Let us consider the following example:

spladder viz --range gene gene1 \
--track coverage,segments alignment1.bam,alignment2.bam \
--track event any \
--track splicegraph \
--track event exon_skip

This plot will have five tracks: coverage, segments, events (any), splicing graph, events (only exon skips). This means,
even the same track can be plotted multiple times, if requested.

3.3.4 Plotting range

Using the --range parameter, the user determines exactly which genomic range is to be considered for plotting the
data tracks. This information can be provided as coordinates or the ID information of one or many elements. The
usage of --range overrules any range determined based on the elements given via --tracks. The syntax thereby
is as follows:

spladder viz --range TYPE TYPE_INFO [TYPE_INFO ...]

Here, TYPE describes one of the following possibilities (where TYPE_INFO is specifically defined for each type):

• gene allows for providing at least one gene ID to be considered. If multiple genes should be used, just list them
after the gene keyword:

spladder viz --range gene geneID1 geneID2

• event allows for providing at least one event ID to be considered. If multiple events should be used, just list
them after the event keyword:

spladder viz --range event eventID1 eventID2

• coordinate allows for specifying a coordinate range to be used. Here, the type info contains the list of coor-
dinates to be used. As all ranges will be combined into a joint range eventually, there is little use in providing
several coordinate ranges, as the union would be taken. For specifying the genome range of positions 100000 to
101000 on chr1, one would specify:

spladder viz --range coordinate chr1 100000 101000

Note: The --range parameter can be used multiple times to combine several ranges. Please note that all provided
ranges will be combined into a joint range including all other ranges before plotting. Also note that plotting ranges
on different chromosomes is currently not supported as well as plotting ranges exceeding a total length of 1 000 000
bases.

16 Chapter 3. Run modes

SplAdder Documentation, Release 3.0.2

3.3.5 Output names and formats

The user has to choose an output file name for each plot generated. This is specified as the basename of the output file,
not containing the output directory or the file ending (which is chosen based on the format). The relevant parameter
for this is --outbase (or short -O). The default format of the plots is pdf, but any format supported by Matplotlib
can be used. The following two calls for using the output basename mytest and the format png are equivalent:

spladder viz ... --outbase mytest --format png ...
spladder viz ... -O mytest --format png ...

Please note that when using the special plotting mode --test and providing a test directory with --testdir (see
below), the plots are not placed in the SplAdder output directory but in the given test directory.

3.3.6 Plotting test results

For visualizing events based on the outcome of the testing mode, there is a special track mode available, which is
called --test. In principle it works as the other tracks but follows a specific syntax of its elements. There is a
default set of 2 tracks that is generated using this option: an event track showing the event of interest and a segements
track showing the quantification of segments used for the test for each of the two groups. The general structure is:

--test TESTCASE EVENT_TYPE TOP_K

While any of the elements is optional, the order is important and elements can only be omitted at the end but not in the
middle.

Depending on how the groups are named in testing mode, the output can be found in different subdirectories. So if you
groups were WT and MUT, your output name used by SplAdder would be testing_WT_vs_MUT. However, if you did
not use any group names, you can just use default. Following are two examples for using the default and the specific
group mode, respectively:

spladder viz ... --test default ...
spladder viz ... --test testing_WT_vs_MUT ...

The EVENT_TYPE specifies the test result of which event type should be considered. For each of the k top events, a
separate plot will be generated. You can comma-separate multiple event types or write any, for all event types. Here
two examples for plotting exon skips and intron retentions or any event, respectively:

spladder viz ... --test default exon_skip,intron_retention ...
spladder viz ... --test default any

Lastly, the user can specify the number of top events (following the ranking in the testing result file) that should be
plotted. If the value is omitted, the default of 1 is used. To plot for instance the top 5 exon skip events, one would use:

spladder viz ... --test default exon_skip 5

This will create 5 separate plots. The output name will have descriptive suffixes, to tell them apart.

It can happen that the output for testing with SplAdder was written into a user-defined directory and not into the default
SplAdder output directory. In this case, the directory can be specified using --testdir. For instance, if the test
results can be found in mytestingdir, the SplAdder call would need to be adapted as follows:

spladder viz ... --test default exon_skip 5 --testdir mytestingdir

As already noted earlier, this will also influence where the plots for the test are placed. For the above example, all
plots will be written to mytestingdir/plots/.

3.3. The viz mode 17

SplAdder Documentation, Release 3.0.2

Note: If in addition to --test further tracks are also defined with --track, then each of the tracks is added to
each of the plots generated for the test results.

18 Chapter 3. Run modes

CHAPTER 4

Use on large cohorts

While SplAdder is often run on a smaller set of samples, it can also be applied to larger cohorts containing hundreds
or thousands of samples. In this setting, it is often advisable to distribute the computation over a high-performance
compute cluster and use some workflow management framework (such as Snakemake, Nextflow, or even bash) to
coordinate the individual steps.

In the following, we will provide a short overview on how the computation of splicing graphs and their quantification
can be split up into individual parts, so they can be run independently. Please note, that the output directory for the
whole computation is project specific and stays the same for all (even parallel) runs. SplAdder will not re-compute
existing files and when called on different input files, name the outputs accordingly.

The process can be separated into four subsequent logical steps:

1. Single graphs: Creating an individual splicing graph per input sample

2. Merged graph: Merging all individual graphs into a joint graph representation

3. Quantification: Quantifying edges and nodes in the joint graph on each individual input sample

4. Event Calling: Calling events (optionally perform testing) on the joint, quantified graph.

For the description of the following steps, we will create a small hypothetical setup of samples, that will be used
throughout all commands. Assume that we have a cohort of 10 samples S1 to S10. The aligned (and indexed) bam files
for the samples are available as S1.bam . . . S10.bam. We are operating on a given annotation file annotation.
gtf and our SplAdder project directory that will hold all results will be spladder_out.

We will use simple bash commands to emulate the distribution of individual tasks. Please note that the code as
stated here, would just sequentially compute all single tasks and not generate any parallelization benefit. For this to
materialize, you would need to submit the individual tasks to a compute cluster or similar. (If you have a machine with
many cores available, you could also trivially parallelize by running several tasks in the background simultaneously.)

4.1 1. Single graphs

In this first step, we will generate a splicing graph for each input sample.

19

https://snakemake.readthedocs.io/en/stable/
https://www.nextflow.io/

SplAdder Documentation, Release 3.0.2

Note: In general a splicing graph is generated per gene. We will abstract from this here and only describe how the
graphs will be treated across samples. This implicitly means that this is done per gene.

For each of the given input samples Si, we invoke the splicing graph generation separately:

for i in $(seq 1 10)
do

spladder build -o spladder_out \
-a annotation.gtf \
-b S${i}.bam \
--merge-strat single \
--no-extract-ase

done

This will create an individual splicing graph in spladder_out/spladder for each sample. Please note that we
added the --no-extract-ase option here. This is to prevent SplAdder from automatically proceeding as is done
by default in the smaller cohort analyses. With this option present, we gain a more fine-grained controlled over the
graph building process. This option will also be present in the subsequent steps.

4.2 2. Merged graph

As a subsequent step, we now need to integrate the graphs across samples, to form one merged splicing graph (per
gene). We can just invoke SplAdder again on the same output directory now using a different merging strategy:

spladder build -o spladder_out \
-a annotation.gtf \
-b S1.bam,S2.bam,S3.bam,S4.bam,S5.bam,S6.bam,S7.bam,S8.bam,S9.bam,S10.

→˓bam \
--merge-strat merge_graphs \
--no-extract-ase

Please note that now all alignment files of the cohort need to be provided. For larger cohorts it is useful to collect all
alignment files in a separate files, e.g. alignments.txt. Then the merging step could also be invoked as follows:

spladder build -o spladder_out \
-a annotation.gtf \
-b alignments.txt \
--merge-strat merge_graphs \
--no-extract-ase

4.3 3. Quantification

Having the merged graph at hand, we can now proceed to quantifying nodes and edges of the graph based on the
alignment data. Each quantification will be done independently:

for i in $(seq 1 10)
do

spladder build -o spladder_out -a annotation.gtf -b S${i}.bam \
--merge-strat merge_graphs \
--no-extract-ase \
--quantify-graph \

(continues on next page)

20 Chapter 4. Use on large cohorts

SplAdder Documentation, Release 3.0.2

(continued from previous page)

--qmode single
done

Please note that now the merging strategy is still merge_graphs, as we are quantifying the merged graph and not
the individual sample graphs. Also note that we have added the --qmode single option.

As a second step to this phase, we need to collect the individual quantifications and aggregate them in a joint database:

spladder build -o spladder_out \
-a annotation.gtf \
-b S1.bam,S2.bam,S3.bam,S4.bam,S5.bam,S6.bam,S7.bam,S8.bam,S9.bam,S10.

→˓bam \
--merge-strat merge_graphs \
--no-extract-ase \
--quantify-graph \
--qmode collect

4.4 4. Event Calling

Now one can proceed analog to the analysis of smaller cohorts. The joint graph is fully quantified and we can move
on to use it for downstream analyses, for instance to extract exon skipping events:

spladder build -o spladder_out \
-a annotation.gtf \
-b S1.bam,S2.bam,S3.bam,S4.bam,S5.bam,S6.bam,S7.bam,S8.bam,S9.bam,S10.

→˓bam
--event-types exon_skip

In the above call we have omitted the --no-extract-ase option and SplAdder will automatically proceed to this
step. As all the intermediate quantification steps are already done, no step will be carried out twice.

4.5 General Notes

When I/O is an issue, SplAdder has the option to generate a compressed summary for each input alignment file. The
information contained in that summary is comparable to a wiggle file but has also information on the introns. Using
this format will need some additional disk space, but allows SplAdder to perform quantification and querying of intron
coverage much more efficiently. You can switch on the use of alignment summaries by:

spladder build ... --sparse-bam ...

4.4. 4. Event Calling 21

SplAdder Documentation, Release 3.0.2

22 Chapter 4. Use on large cohorts

CHAPTER 5

File formats

5.1 Input Files – build mode

5.1.1 Annotation Files

SplAdder accepts two different formats for annotation files: GTF and GFF. It will automatically detect the format
from the file name ending, so please make sure that your annotation ends with either gtf or gff. Most sources for
genome annotation provide their files in one of these two formats. If you would like to generate your own annotation
files, please follow the respective specifications:

GTF: ensembl

GFF: broad, ucsc

5.1.2 Alignment Files

All alignment files are expected to be in BAM format, following the SAM format specification. We have successfully
tested SplAdder with the following aligners: - STAR - PALMapper - TopHat

5.2 Output Files – build mode

SplAdder produces a variety of different output files. Here we will mainly discuss files that are aimed at the user and
omit intermediate files that mainly necessary for internal processes of SplAdder. Most of the latter will be stored in
the spladder subdirectory in the output directory.

After completing a SplAdder run, you will find several different output files in the output directory. Following, we
will describe each file type.

23

http://www.ensembl.org/info/website/upload/gff.html
http://www.broadinstitute.org/annotation/argo/help/gff3.html
http://genome.ucsc.edu/FAQ/FAQformat.html#format3
https://samtools.github.io/hts-specs/SAMv1.pdf
https://github.com/alexdobin/STAR
http://www.raetschlab.org/suppl/palmapper/genomemapper-qpalma
https://ccb.jhu.edu/software/tophat/index.shtml

SplAdder Documentation, Release 3.0.2

5.2.1 Annotation Files in GFF3 Format

These files have the general pattern merge_graphs_<event_type>_C<confidence_level>.
confirmed.gff3 and contain the events that have been detected by SplAdder. Each event is shown as a
mini gene consisting of two different isoforms. If instance an exon skip would be described as:

##gff-version 3
Chr1 exon_skip gene 7616027 7616726 . + . ID=exon_skip.
→˓1;GeneName="AT1G21690"
Chr1 exon_skip mRNA 7616027 7616726 . + . ID=exon_skip.
→˓1_iso1;Parent=exon_skip.1;GeneName="AT1G21690"
Chr1 exon_skip exon 7616027 7616107 . + . Parent=exon_
→˓skip.1_iso1
Chr1 exon_skip exon 7616603 7616726 . + . Parent=exon_
→˓skip.1_iso1
Chr1 exon_skip mRNA 7616027 7616726 . + . ID=exon_skip.
→˓1_iso2;Parent=exon_skip.1;GeneName="AT1G21690"
Chr1 exon_skip exon 7616027 7616107 . + . Parent=exon_
→˓skip.1_iso2
Chr1 exon_skip exon 7616266 7616332 . + . Parent=exon_
→˓skip.1_iso2
Chr1 exon_skip exon 7616603 7616726 . + . Parent=exon_
→˓skip.1_iso2

For a definition of the different columns, please refer to one of the available GFF3 specifications at ensembl or ucsc.
This file will allow you to display the events in a genome viewer such as UCSC Genome Browser, IGV or GBrowse.

5.2.2 Event Files in HDF5 Format

The event files contain all relevant event information and are stored in the hierarchical data format HDF5, allowing for
efficient query, addition of data and interoperability between different platforms and languages. You can easily peek
into the content of a hdf5 file:

$> h5ls -r merge_graphs_exon_skip_C3.counts.hdf5

/ Group
/conf_idx Dataset {1}
/confirmed Dataset {2}
/event_counts Dataset {4, 7, 2}
/event_features Dataset {7}
/event_pos Dataset {2, 6}
/gene_chr Dataset {1}
/gene_idx Dataset {2}
/gene_names Dataset {1}
/gene_pos Dataset {1, 2}
/gene_strand Dataset {1}
/num_verified Dataset {4, 2}
/iso1 Dataset {4, 2}
/iso2 Dataset {4, 2}
/psi Dataset {4, 2}
/samples Dataset {4}
/strains Soft Link {/samples}
/verified Dataset {4, 4, 2}

This example lists the contents of a hypothetical exon_skip event hdf5 file, containing the information over 2 exon
skips found in a cohort of 4 samples. The tree that is shown looks a little bit like a file system tree and this is also the

24 Chapter 5. File formats

http://www.ensembl.org/info/website/upload/gff.html
http://genome.ucsc.edu/FAQ/FAQformat.html#format3
https://genome.ucsc.edu/cgi-bin/hgGateway
http://www.broadinstitute.org/igv/
http://gmod.org/wiki/GBrowse
https://www.hdfgroup.org/HDF5/

SplAdder Documentation, Release 3.0.2

best analogy to how the file is organized. Directories in the file system would correspond to groups in hdf5 and files
in file system to datasets in hdf5. Each group can contain more groups or datasets.

The event hdf5 is structured as follows:

• conf_idx: 0-based index set, containing the index of the events that are confirmed in the provided samples

• confirmed: binary array indicating for each event whether it is confirmed or not

• event_counts: 3-dimensional matrix (S x F x E) containing counts for each of the E events, F features and S
samples

• event_features: list containing the description of the counted features per event type

• event_pos: position of all event exons encoded as start,stop pairs for each event (events are rows, coordinates
are columns)

• gene_chr: chromosome for each gene in the gene list

• gene_idx: index that maps each event to a gene in the gene list (0-based)

• gene_names: gene name for each gene in the gene list

• gene_pos: position of each gene in the gene list encoded as start,stop pair

• gene_strand: strand for each gene in the gene list

• num_verified: 2-dimensional count matrix (V x E) containing the number of samples where validation criterion
V was met for event E

• iso1: 2-dimensional matrix (S x E) containing the number of spliced reads in sample S supporting isoform 1 in
event E

• iso2: 2-dimensional matrix (S x E) containing the number of spliced reads in sample S supporting isoform 2 in
event E:

• psi: 2-dimensional matrix (S x E) containing the percent spliced in (PSI) value for event E in sample S. PSI is
computed as iso1 / (iso1 + iso2)

• samples: names of the samples counted

• strains: names of the samples counted (kept for legacy)

• verified: 3-dimensional bool matrix (S x V x E) indicating whether validation criterion V for event E was met
in sample S

Naming of Features

The naming of features follows a simple logic utilizing the numbering of exon segments as shown in the below image.
The numbering follows genomic coordinates. That is the below image shows the positive strand. For the negative
strand the numbering would need to be reversed. For instance to count the number of spliced alignments that confirm
the connection of exon segments e1 and e3 in an exon skip, the corresponding feature name would be e1e3_conf.

5.2. Output Files – build mode 25

SplAdder Documentation, Release 3.0.2

The below list details the event features for each of the supported event types:

• features alt3_prime / alt_5prime:

– valid: contains a 1 if the event is valid and 0 otherwise

– e1_cov: mean coverage of the first constant exon segment in the event

– e2_cov: mean coverage of the exoni segment between the two alternative splice sites

– e3_cov: mean coverage of the second constant exon segment in the event

– e1e3_conf: number of spliced alignments spanning the longer intron

– e2_conf: number of spliced alignments spanning the shorter intron

• features exon_skip:

– valid: contains a 1 if the event is valid and 0 otherwise

– e1_cov: mean coverage of the left flanking exon (in genomic coordinates, ignoring strand)

– e2_cov: mean coverage of the cassette exon

– e3_cov: mean coverage of the right flanking exon (in genomic coordinates, ignoring strand)

– e1e2_conf: number of spliced alignments spanning from left flanking to cassette exon

– e2e3_conf: number of spliced alignments spanning from cassette to right flanking exon

– e1e3_conf: number of spliced alignments spanning from left flanking to right flanking exon

• features intron_retention:

– valid: contains a 1 if the event is valid and 0 otherwise

– e1_cov: mean coverage of the left flanking exon (in genomic coordinates, ignoring strand)

– e2_cov: mean coverage of the retained intron

– e3_cov: mean coverage of the right flanking exon (in genomic coordinates, ignoring strand)

– e1e3_conf: number of spliced alignments spanning the intron

– e2_cov_region: fraction of positions in the intron that have a coverage > 0

• features mult_exon_skip:

– valid: contains a 1 if the event is valid and 0 otherwise

– e1_cov: mean coverage of the left flanking exon (in genomic coordinates, ignoring strand)

– e2_cov: mean coverage over all skipped exons

– e3_cov: mean coverage of the right flanking exon (in genomic coordinates, ignoring strand)

– e1e2_conf: number of spliced alignments spanning from left flanking to cassette exon

– e2e3_conf: number of spliced alignments spanning from cassette to right flanking exon

– e1e3_conf: number of spliced alignments spanning from left flanking to right flanking exon

– sum_e2_conf: number of spliced alignments spanning any of the introns between neighboring
skipped exons

– num_e2: number of skipped exons

– len_e2: cumulative length of skipped exons

• features mutex_exons:

26 Chapter 5. File formats

SplAdder Documentation, Release 3.0.2

– valid: contains a 1 if the event is valid and 0 otherwise

– e1_cov: mean coverage of the left flanking exon (in genomic coordinates, ignoring strand)

– e2_cov: mean coverage of the first skipped exon (first defined by genomic coordinates)

– e3_cov: mean coverage of the second skipped exon (second defined by genomic coordinates)

– e4_cov: mean coverage of the right flanking exon (in genomic coordinates, ignoring strand)

– e1e2_conf: number of spliced alignments spanning from left flanking to first exon

– e2e4_conf: number of spliced alignments spanning from left flanking to second exon

– e1e3_conf: number of spliced alignments spanning from first to right flanking exon

– e3e4_conf: number of spliced alignments spanning from second to right flanking exon

Validation Criteria

For each event type, SplAdder uses different empirical validation criteria to determine, whether the called event is valid
in a given sample. The overview of that information is provided in the verified and num_verified fields in the HDF5
count file for each event type. This data also forms the basis for deciding on the list of confirmed events. An event is
kept as confirmed, if each of the validation criteria is fulfilled in at least one sample. (This does not necessarily mean it
is the same sample for different criteria, as the aggregated counts from num_verified are used for this decision.) The
indices of all confirmed events are indicated in the conf_idx array of the HDF5 count file for each event type.

Following, we provide a list of the validation criteria per event type:

• Multiple Exon Skip

1. exon coordinates are valid (>= 0 && start < stop && non-overlapping) & skipped exon coverage >=
FACTOR * mean(pre, after)

2. inclusion count first intron >= threshold

3. inclusion count last intron >= threshold

4. avg inclusion count inner exons >= threshold

5. skip count >= threshold

• Intron Retention

1. counts meet criteria for min_retention_cov, min_retention_region and min_retetion_rel_cov

2. min_non_retention_count >= threshold

• Exon Skip

1. coverage of skipped exon is >= than FACTOR * mean(pre, after)

2. inclusion count of first intron >= threshold

3. inclusion count of second intron >= threshold

4. skip count of exon >= threshold

• Alt 3/5 Prime

1. coverage of diff region is at least FACTOR * coverage constant region

2. both alternative introns are >= threshold

• Mutex Exons

1. coverage of first alt exon is >= than FACTOR times average of pre and after

2. coverage of second alt exon is >= than FACTOR times average of pre and after

5.2. Output Files – build mode 27

SplAdder Documentation, Release 3.0.2

3. both introns neighboring first alt exon are confirmed >= threshold

4. both introns neighboring second alt exon are confirmed >= threshold

5.2.3 Event Files in TXT Format

Event files in txt format contain essentially the same information as the HDF5 files in a tab delimited column format
with one line per event and the following entries per line:

1: chromosome of the event
2: strand of the event
3: unique event_id
4: name of gene the event is located in
5-5+n: start and stop coordinates of the event exons
5+n and following: count values for each of the samples with the following layout
→˓(features are event type specific as defined above for HDF5 files:

<sample1>:<feature1>
<sample1>:<feature2>
<sample1>:<feature3>
...
<sample2>:<feature1>
...

The features defined per sample are the same as in the HDF5 files defined above. The number of features thereby
depends on the event type.

5.2.4 Files in PICKLE Format

These files are for internal usage only and can be ignored.

5.3 Output Files – test mode

In the testing mode, SplAdder generates both tabulated output as well as some images for diagnosing properties of the
data. The latter is still in beta mode. Please report an issue on the tracker in case you should encounter any problems.

5.3.1 Files in TXT Format

The results of the test mode can be generally found in the testing subdirectory of the SplAdder output folder.
For each event type {ET} and confidence level {C}, several different output files in text format are generated:

• test_results_C{C}_{ET}.tsv

• test_results_C{C}_{ET}.gene_unique.tsv

• test_results_extended_C{C}_{ET}.tsv

In the following, we will provide more description for each of the files.

Basic test output per event

The basic outputs of testing are stored in the file test_results_C{C}_{ET}.tsv. In addition to the header, the
file contains one line per tested event. It contains 15 columns carrying the following information:

1. event_id – ID of the event

28 Chapter 5. File formats

https://github.com/ratschlab/spladder/issues

SplAdder Documentation, Release 3.0.2

2. chrm – event location: chromosome/contig

3. exon_pos – event location: exon position (start-stop:start-stop:. . .)

4. alt_usage – list of binary values, indicating alternative usage of each exon (same order as in exon_pos)

5. gene_id – ID of gene

6. gene_name – Name of gene

7. p_val – raw p-value from differential test

8. p_val_adj – adjusted p-value from differential test

9. dPSI – delta PSI (absolute difference between mean-PSI of group A and mean-PSI of group B)

10. mean_event_count_A – mean support for tested splice path in group A

11. mean_event_count_B – mean support for tested splice path in group B

12. log2FC_event_count – log2 fold-change of mean support group A vs group B

13. mean_gene_exp_A – mean gene expression of gene in group A

14. mean_gene_exp_B – mean gene expression of gene in group B

15. log2FC_gene_exp – log2 fold-change of gene expression group A vs group B

Basic test output per gene The file test_results_C{C}_{ET}.gene_unique.tsv contains essentially the
same information as the basic test output per event, just made unique per gene. That is, if a gene contains multiple
events of the same type, here only the most significant one is reported. The columns are the same.

Extended test output per event The file test_results_extended_C{C}_{ET}.tsv contains additional out-
put for each tested event and can be used for debugging purposes. The number of columns is variable and depends on
the size of the input groups used for testing. For the following explanation, we assume that input group A has size 2
and input group B has size 3. The first 15 columns are identical to the basic event output file. The additional columns
are as follows:

16. event_count:group_A_sample1 – support for tested splice path in group A sample 1

17. event_count:group_A_sample2 – support for tested splice path in group A sample 2

18. event_count:group_B_sample1 – support for tested splice path in group B sample 1

19. event_count:group_B_sample2 – support for tested splice path in group B sample 2

20. event_count:group_B_sample3 – support for tested splice path in group B sample 3

21. disp_raw – raw dispersion estimate for the tested event

22. disp_adj – corrected dispersion estimate for the tested event

5.3.2 Diagnose Plots

The testing mode can generate some diagnose plots (via --diagnose-plots) that can help you assess the data
you are looking at. These plots are still in beta mode and might change in future versions of SplAdder.

The plots reside in the SplAdder output directory in the folder testing/plots. Currently, the following plots are
available:

Count distribution A plot showing the distribution of supporting counts and the gene expression over events per
tested group / condition. The plot is available over raw counts and over log10 transformed counts.

MA plot A plot showing the log2 fold-change of each event over the mean normalized counts.

Dispersion Three plots showing the raw dispersion estimate, the dispersion fit and the adjusted dispersion..

5.3. Output Files – test mode 29

SplAdder Documentation, Release 3.0.2

QQ plot Quantile-quantile plots showing the distribution of p-values after testing over a uniform distribution to check
for over-inflation. Available for raw and adjusted p-values.

5.3.3 Files in PICKLE Format

Similar to build mode, these files are for internal usage only and can be ignored.

30 Chapter 5. File formats

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

31

	Installation
	Install from PyPi
	Install from source

	General information
	The SplAdder directory setup
	SplAdder is a heuristic
	Default parameters
	Working with large datasets

	Run modes
	The build mode
	1 Graph construction
	2 Graph augmentation
	3 Graph quantification
	4 Event detection

	The test mode
	The viz mode
	General organisation
	Data tracks
	Order of multiple tracks
	Plotting range
	Output names and formats
	Plotting test results

	Use on large cohorts
	1. Single graphs
	2. Merged graph
	3. Quantification
	4. Event Calling
	General Notes

	File formats
	Input Files – build mode
	Annotation Files
	Alignment Files

	Output Files – build mode
	Annotation Files in GFF3 Format
	Event Files in HDF5 Format
	Event Files in TXT Format
	Files in PICKLE Format

	Output Files – test mode
	Files in TXT Format
	Diagnose Plots
	Files in PICKLE Format

	Indices and tables

