

Welcome to SplAdder’s documentation!

Welcome to the documentation of SplAdder. Here you will learn more about the details of the SplAdder
pipeline, how to apply it to your data, how ^to choose parameters well suited for the kind of
question you would like to answer, or how to use and visualize the output data. SplAdder is
continuously improved and currently in alpha state. It has been used and tested in context of
various research projects of varying scale, ranging from a few samples of A. thaliana to thousands
of human samples.

To install the latest release, please use:

pip install spladder

Further information about requirements can be found in the Installation notes.

Before diving deeper into the documentation, we suggest to read through the General
information first.

Contents:

	Installation
	Install from PyPi

	Install from source

	General information
	The SplAdder directory setup

	SplAdder is a heuristic

	Default parameters

	Working with large datasets

	Run modes
	The build mode
	1 Graph construction

	2 Graph augmentation

	3 Graph quantification

	4 Event detection

	The test mode

	The viz mode
	General organisation

	Data tracks

	Order of multiple tracks

	Plotting range

	Output names and formats

	Plotting test results

	Use on large cohorts
	1. Single graphs

	2. Merged graph

	3. Quantification

	4. Event Calling

	General Notes

	File formats
	Input Files – build mode
	Annotation Files

	Alignment Files

	Output Files – build mode
	Annotation Files in GFF3 Format

	Event Files in HDF5 Format

	Event Files in TXT Format

	Files in PICKLE Format

	Output Files – test mode
	Files in TXT Format

	Diagnose Plots

	Files in PICKLE Format

Indices and tables

	Index

	Module Index

	Search Page

Installation

There are several ways to obtain SplAdder. You can directly install it from the Python package index
using pip or you can clone the git repository and set it up yourself.

Install from PyPi

The installation from Pypi is very straightforward. You can install the latest version of SplAdder
using pip:

pip install spladder

If you would like to get a specific version, you can do:

pip install spladder=2.2.0

Install from source

If you would like to get the latest changes available on GitHub, you can clone the repository:

git clone https://github.com/ratschlab/spladder.git

This will create a directory named spladder inside your current directory. You can then install
SplAdder locally by first changing into the spladder directory and then typing:

python setup.py install

If you are interested in using a specific branch, e.g., development, you would need to change into
that branch first, before you install. You can achieve this with:

git checkout development
python setup.py install

General information

In the following, we provide some general information on how the setup of SplAdder works in
principle and mention several useful things to keep in mind when using the software.

The SplAdder directory setup

The general purpose of SplAdder is to build and quantify augmented splicing graphs from RNA-Sequencing
data and to utilize them for the detection for alternative splicing events. To achieve this,
SplAdder operates on a single project at a time, where a project is characterized by a single
shared output (or project) directory. All data of subsequent steps will be written to that
directory and a certain substructure will directly be created by SplAdder.

SplAdder has different run modes that reflect the different steps of a typical analysis pipeline:

	build mode

	for constructing splicing graphs from RNA-Seq data and extracting alternative events

	test mode

	for the differential analysis between samples

	viz mode

	for the visualization of splicing graphs and alternative events

All of these modes will operate on the same output directory. Please note, that the build mode
always has to precede the testing and viz modes, as this creates the splicing graph
structures the latter modes operate on.

Please have a look at the SplAdder run modes page for further information.

SplAdder is a heuristic

We would like to reiterate here that SplAdder is a heuristic approach, that employs a system of
empirical filter rules on RNA-Seq data to extend a splicing graph pre-defined by a given annotation.
Due to this heuristic nature, there is a list of things one should keep in mind when working with
the software:

	Although the algorithm is deterministic, it is sensitive to the order of input data. Especially
when you are working with many input samples and integrate their information to generate a single
splicing graph, the order of input files might influence the outcome. However, in most cases the
generated splicing graphs are robust against changes of the order of the input.

	Depending on the annotation file that you are using, some annotated gene regions might be subject to
filtering. SplAdder will automatically ignore all introns in the input data that could be assigned
to more than one gene in the annotation. (This decision is strand-specific, that is both genes and
the intron need to be on the same strand.)

	As SplAdder will sample all possible events from the graph, there can be a certain redundancy in
the events (although all events are unique as a whole). For instance, if there are 3 possible
donors paired with an acceptor in a gene on the positive strand, SplAdder will output all three
possible pairs of alternative 3 prime splice site events.

Default parameters

For most of the settings available in SplAdder default parameters are assumed. In a basic call in
build-mode (spladder build), SplAdder requires at least three parameters: the annotation file
(via -a), a comma-separated list of alignment files (via -b) and an output
directory where results files are stored (via -o):

spladder build -o output_directory -b bam_file -a annotation_file

This will run SplAdder in its default configuration, which consists of the following steps:

	transform annotation into splicing graph representation

	generate an augmented splicing graph for each alignment file by inferring and
adding the following elements:

	insert intron retentions

	insert cassette exons

	insert new intron edges

	merge the augmented splicing graphs into a common splicing graph

	
	extract the following alternative splicing events:

	
	exon skip

	intron retention

	alternative 3’/5’ splice site

	multiple exon skip

	mutually exclusive exons

	quantify all alternative splicing events on each of the provided alignment
files

Working with large datasets

SplAdder can be scaled to larger cohorts and has been run successfully on studies including as many
as 10000 samples. Working on such large datasets still needs some consideration and planning and
might require to call individual steps differently than how it is done for smaller sample sets.

We provide more detailed information in the section describing how to handle Large cohorts.

Run modes

SplAdder has different run modes that reflect the different steps of a typical analysis pipeline:

	build mode

	for constructing splicing graphs from RNA-Seq data and extracting alternative events

	test mode

	for the differential analysis between samples

	viz mode

	for the visualization of splicing graphs and alternative events

In the following, we will give a short overview of the different modes and how to use them. Special
use cases, for instance the handling of large sample cohorts, will be discussed as a separate topic.

The build mode

The build mode is the basic run mode in SplAdder. It is used to construct splicing graphs and
to extract alternative splicing events.

To display all available options for build, one can simply type:

spladder build --help

This first step of any SplAdder pipeline consists of several main phases (some of which can be
omitted) :

	1 Graph construction

	This is the very initial phase. It parses the given annotation file and summarizes all
transcripts of a gene into a splicing graph. This graph will be the basis for all further steps
in the workflow.

	2 Graph augmentation

	Given at least one alignment file, the splicing graph of each gene is augmented with new introns
and exon segments that were detected in the alignment file. There are different ways how a more
than one input alignment files can be combined into final splicing graphs. At the end of this
phase, each gene contains an augmented graph that carries not only annotated splice connections
but also any novel connections found in the data. Depending on the chosen confidence level, this
graph will have a higher or lower density.

	3 Graph quantification

	Once a graph is constructed, all nodes and edges (exons and introns, respectively) in the graph
can be quantified using at least one input alignment file. The quantification values can then be
used subsequently to quantify splicing events and to compute percent spliced in (PSI) values.

	4 Event detection

	Based on the splicing graph of each gene, SplAdder can detect different types of alternative
splicing events: exon skipping, intron retention, alternative 3’ splice sites, alternative 5’
splice sites, mutual exclusive exons and multiple (coordinated) exon skips. Each event can be
quantified using the graph quantifications from the previous step.

In the following, we will provide more in-depth information for each of the phases and describe how
the result can be influenced through the choice of command line parameters.

1 Graph construction

This phase runs implicitly before any other phase. We just describe it here for completeness, but
in general there is no reason to run this phase only by itself. What it does in the background,
though, is to transform the given annotation file:

spladder build .. --annotation annotation.gtf ...

into a SplAdder specific format, containing all transcript information and the initial splicing
graphs per gene. These information will be stored at the same location as annotation.gtf and is
identified by the suffix .pickle. The resulting file in our example would be named
annotation.gtf.pickle. Depending on the settings, additional files might be created, for
instance to mask out certain regions from the annotation.
This step is only performed once per annotation file. The summary files will then be re-used by any
subsequent SplAdder run using the same annotation file.

The user can influence how SplAdder uses the annotation information in certain situations of
ambiguity. However, none of these options is set by default.

In cases of annotations overlapping on the same strand, one can remove the annotation on three
different levels.

If two exons of different genes overlap on the same strand, one can remove them with:

spladder build ... --filter-overlap-exons ...

If two transcripts of different genes overlap on the same strand, one can remove them with:

spladder build ... --filter-overlap-transcripts ...

If two genes overlap on the same strand:

spladder build ... --filter-overlap-genes ...

2 Graph augmentation

The augmentation phase brings together alignment file and splicing graphs. Let’s assume that you are
given an alignment file alignment.bam (which should also have an index alignment.bam.bai)
and an annotation file in GTF format annotation.gtf. You can the simply invoke:

spladder build --bams alignment.bam \
 --annotation annotation.gtf \
 --outdir spladder_out

All three parameters are mandatory for a SplAdder run in build mode. Due to the default values
of other parameters, this will carry out a full run of all phases. We will describe in the
following, which parameters you can change to either only run this phase or to adapt how the
splicing graph will be augmented.

Multiple alignment files can be provided using comma-separated notation:

spladder build --bams alignment1.bam,alignment2.bam,...

Alternatively, a text file, e.g., alignment_list.txt, can be provided. This should contain the
absolute path to one alignment file per line. The filename has to end in .txt. SplAdder can then
be invoked with:

spladder build --bams alignment_list.txt

In its latest version, SplAdder also supports (on an experimental level) CRAM compressed alignment
files as input. If you are using such files, in addition to the input filenames of the
alignment files, also the path to the indexed reference sequence used for compression is required:

spladder build --bams alignment1.cram,alignment2.cram,... --reference path/to/cram_ref.fa

	Alignment

	By default, SplAdder only uses primary alignments (in SAM/BAM the ones not carrying the 256
bit-flag). This can be changed by also allowing for secondary alignments to be used:

spladder build ... --no-primary-only ...

The quality of an alignment is partially determined by the number of mismatches it carries. The
default tag in SAM/BAM for this is the NM:i: tag. To let SplAdder use a different tag, such
as Nm:i:, one can use:

spladder build ... --set-mm-tag Nm ...

Alternatively, one can also force SplAdder not to use any mismatch information (this is not
recommended):

spladder build ... --ignore-mismatches ...

	Augmentation

	Different types of augmentations are possible. The majority of them is switched on by default.
For instance the insertion of new intron retentions is always carried out. To switch this step
off, one would add:

spladder build ... --no-insert-ir ...

Similarly, the addition of novel cassette exons is also on by default. To switch this step off,
one would add:

spladder build ... --no-insert-es ...

Also the addition of novel intron edges is switched on by default. To switch it off, one would
add:

spladder build ... --no-insert-ni ...

On the other hand, additional steps for graph cleaning are not switched on by default. For
instance the removal of exons shorter than 9nt from the graph can be add with:

spladder build ... --remove-se ...

Lastly, as SplAdder is a heuristic framework, the addition of novel nodes and edges to the graph
depends on the input order of new introns and on the current state of the graph (that is the
nodes and edges already present). To increase sensitivity, the addition of new intron edges is
iterated a certain number of times (per default 5 times). One can increase the number if
iterations, for instance to 10, by:

spladder build ... --iterations 10 ...

	Confidence

	The confidence level of a SplAdder run determines how strongly input alignments are filtered
before new nodes and edges are added to the splicing graphs. In general, there are four
confidence levels, with confidence increasing from 0 to 3. The default level is 3 and applies
the highest level of filtering. To adapt this choice, e.g., to confidence level 2, one can use:

spladder build ... --confidence 2 ...

The read filter criteria are dependent on the read length. Here a short overview of the criteria
for each of the levels:

	Level

	Criteria

	Value

	3

	Maximum number of mismatches

	0

	3

	Minimum number of alignments

	2

	3

	Minimum anchor length

	ceil(0.25 * readlength)

	3

	Maximum intron length

	350000

	
	
	

	2

	Maximum number of mismatches

	max(1, floor(0.01 * readlength)

	2

	Minimum number of alignments

	2

	2

	Minimum anchor length

	ceil(0.20 * readlength)

	2

	Maximum intron length

	350000

	
	
	

	1

	Maximum number of mismatches

	max(1, floor(0.02 * readlength)

	1

	Minimum number of alignments

	2

	1

	Minimum anchor length

	ceil(0.15 * readlength)

	1

	Maximum intron length

	350000

	
	
	

	0

	Maximum number of mismatches

	max(2, floor(0.03 * readlength)

	0

	Minimum number of alignments

	1

	0

	Minimum anchor length

	ceil(0.10 * readlength)

	0

	Maximum intron length

	350000

In the above table, the maximum number of mismatches is used to remove reads that have low
quality alignments, the minimum number of alignments is the number of split/spliced alignments
necessary to confirm a new intron edge for being taken into the graph, the minimum achor
length is the shortest overlap to an exon segment that a split/spliced alignment needs to have
to be counted towards confirming an intron, and the maximum intron length is the upper
threshold for new introns to be counted.

	Merging

	As SplAdder can be run with multiple alignment files as input, there are several ways on how
these files can be combined into forming augmented splicing graphs. This behavior is controlled
with the setting of the merging strategy using --merge-strat.

The first way of merging is to generate a separate augmented splicing graph per given input
alignment file. This strategy is called single and can be invoked as follows:

spladder build ... --merge-strat single ...

The second (and default) way of merging is to create a single splicing graph per input file and
then merge all graphs into a joint single graph. (This happens for every gene independently.)
This strategy is called merge graphs and can be invoked as follows:

spladder build ... --merge-strat merge_graphs ...

A third way of merging is to treat all input alignment files as technical replicates and
directly form a splicing graph using all reads. (This makes a difference especially for the
count thresholds.) This strategy is called merge bams and can be invoked as follows:

spladder build ... --merge-strat merge_bams ...

The fourth way of merging is a combination of merge_bams and merge_graphs. In this
setting, both steps are performed and both resulting graphs are integrated into a joint graph.
The idea behind this setting is to generate maximum sensitivity. However, the improvement is in
general marginal and we would not advise to use this setting in general. If you would like to
try it nevertheless, you can do so with:

spladder build ... --merge_strat merge_all ...

	Validation

	SplAdder has the option to validate edges in the graph. This is relevant when working on larger
cohorts of samples. In this filtering step an edge is removed if it is not present in the
initial annotation and is supported in less than a certain number of input samples. By default
this threshold is 10 or the number of input samples in cases where less than 10 samples are
given. The threshold can be adapted using --validate-sg-count. If nodes get orphaned
through the pruning process, they will be also removed from the graph. Following an example that
removes all edges from the graph that are present in less than 5 input samples:

spladder build ... --validate-sg --validate-sg-count 5 ...

3 Graph quantification

In the step of graph quantification, the augmented graph is evaluated again against all given input
alignment files, to determine edge and node weights based on the respective expression. If
alternative splicing events are to be extracted (next step), this step is carried out automatically.
If the user decided not to extract alternative splicing events (explained in the next section), but
the graph should be quantified anyways, this can be achieved with:

spladder build ... --quantify-graph ...

Especially for larger cohorts, it can be challenging to process through all the alignment files for
quantification. (We will provide more detailed explanations for this scenario in Working with large
cohorts.) Here, we will just mention, that the quantification step can be invoked in different
modes, called qmodes. Let us assume, that two alignment files were provided to SplAdder,
aligment1.bam and alignment2.bam. Then the default is that all files processed sequentially.
This quantification mode is called all and (despite being used implicitly per default), can also
be explicitly set with:

spladder build ... --bams alignment1.bam,alignment2.bam \
 --qmode all ...

As an alternative, one can also provide a single alignment file at a time to SplAdder. This strategy
is called single and can be used to parallelize SplAdder processes across alignment files. It
can be invoked via:

spladder build .. --bams alignment1.bam --qmode single ...
spladder build .. --bams alignment2.bam --qmode single ...

The single command always needs to be accompanied by an additional run of SplAdder, that
integrates the quantification files for the single alignment files into a joint data structure.
For this, all alignment files are provided as input and the quantification mode collect is
chosen:

spladder build .. --bams alignment1.bam,alignment2.bam \
 --qmode collect ...

4 Event detection

In this last phase of the build mode, the graphs are used for the extraction of alternative
splicing events. Event extraction is performed per default. The user can choose to omit this step
entirely (for instance to carry it out at a later point in time). This is done via:

spladder build ... --no-extract-ase ...

	Event extraction

	SplAdder can currently extract 6 different types of alternative splicing events:

	exon skips (exon_skip)

	intron retentions (intron_retention)

	alternative 3’ splice sites (alt_3prime)

	alternative 5’ splice sites (alt_5prime)

	mutually exclusive exons (mutex_exons)

	multiple (coordinated) exons skips (mult_exon_skip)

Per default all events of all types are extracted from the graph. To specify a single type or a
subset of types (e.g., exon skips and mutually exclusive exons only), the user can specify the short
names of the event types (as shown in parentheses above) as follows:

spladder build ... --event-types exon_skip,mutex_exons ...

In some cases (for instance when integrating hundreds of alignment samples), the splicing graphs can
grow very complex. To limit the running time, an upper bound for the maximum number of edges in the
splicing graph of a gene to be used for event extraction is set. This threshold is 500 per default.
To adapt this threshold, e.g., to 250, the user can specify:

spladder build ... --ase-edge-limit 250 ...

	Event verification

	Similar to graph validation, SplAdder also performs a step of splice event verification. Only
verified events are reported as confident to the user. There are two possibilities how the validity of
a confident event is established.

The classical way for event verification is to use heuristic criteria based on the RNA-Seq
evidence provided to SplAdder. Depending on the alternative event type, as different set of
criteria is used. The tables below summarize the criteria currently in use for the different
event types. The order and numbering of criteria is the same as used in the output files of
SplAdder.

	Multiple Exon Skip

	0

	exon coordinates are valid (>= 0 && start < stop && non-overlapping) &
skipped exon coverage >= FACTOR * mean(pre, after)

	1

	inclusion count first intron >= threshold

	2

	inclusion count last intron >= threshold

	3

	avg inclusion count inner exons >= threshold

	4

	skip count >= threshold

	Intron Retention

	0

	counts meet criteria for min_retention_cov, min_retention_region and
min_retetion_rel_cov

	1

	min_non_retention_count >= threshold

	Exon Skip

	0

	coverage of skipped exon is >= than FACTOR * mean(pre, after)

	1

	inclusion count of first intron >= threshold

	2

	inclusion count of second intron >= threshold

	3

	skip count of exon >= threshold

	Alternative 3/5 Prime

	0

	coverage of diff region is at least FACTOR * coverage constant region

	1

	both alternative introns are >= threshold

	Mutually Exclusive Exons

	0

	coverage of first alt exon is >= than FACTOR times average of pre and after

	1

	coverage of second alt exon is >= than FACTOR times average of pre and after

	2

	both introns neighboring first alt exon are confirmed >= threshold

	3

	both introns neighboring second alt exon are confirmed >= threshold

In addition to the classical, RNA-Seq evidence based mode, since version 2.5 it is also allowed
to use the provided annotation to verify an existing event. In this mode each one of the
criteria listed above is replaced with a lookup in the provided annotation. That is, if an
intron is already annotated, it will be used for event verification irrespective of any RNA-Seq
expression support. This mode is especially useful for single sample analysis, where a complete
isoform switch might have occurred and only the alternative event path is supported by reads but
not the annotated one. In this case, the event is still reported. This mode is switched off by
default and can be activated via:

spladder build ... -use-anno-support ...

The test mode

This SplAdder mode is for differentially testing the usage of alternative event between two groups
of samples. A prerequisite for this is that all samples that are involved in testing have been
subjected to a joint analysis in the build mode. However, not the full set of samples collected
in the build mode has to be subjected to testing, but subsets of samples can be used instead.

It is recommended that for each sample condition to be tested (e.g., wild type and some mutant), the
number of available replicates is at least three. Further, the mean-variance relationship for intron
counts are estimated on the set of tested events. It the number of events to be tested becomes too
small, then this estimate becomes unstable and might result in an error.

For the invocation of the testing mode, three different input parameters are mandatory:

spladder test --conditionA aligmmentA1.bam,alignmentA2.bam \
 --conditionB alignmentB1.bam,alignmentB2.bam \
 --outdir spladder_out

In detail, these are the two lists of alignment files representing the samples for conditions A and
B, respectively, as well as the SplAdder output directory. This is the same output directory, as
has been used for the build mode.
Analog to the way a list of alignments can be provided in build mode, also in test mode the
comma-separated file list can be substituted with a file containing the paths to the respective
files:

spladder test --conditionA alignmentsA_list.txt \
 --conditionB alignmentsB_list.txt \
 --outdir spladder_out

By default all event types will be subjected to testing (if they were extracted from the graph prior
to testing). If only a specific event type or subset of types should be tested, e.g., exon skips and
mutual exclusive exons, the same syntax as in build mode can be applied:

spladder test ... --event-types exon_skip,mutex_exons ...

If you have built the SplAdder graphs using non-default setting, for instance an adapted confidence
level of 2, these parameters also need to be passed in test mode, so the correct input files are
chosen from the project directory:

spladder test ... --confidence 2 ...

By default expression outliers are removed in a preprocessing step. If you would like to keep genes
that show outlier expression, this behavior can be disabled with:

spladder test ... --no-cap-exp-outliers

Similarly, you can also switch on the capping of splice outliers, which is not done by default:

spladder test ... --cap-outliers ...

Sometimes it is useful to assign labels to the two groups being tested, especially is multiple
different groupings are analyzed. Groups A and B can be assigned arbitrary labels, such as Mutant
and Wildtype, using:

spladder test ... --labelA Mutant --labelB Wildtype

In addition, you can also provide a separate tag that will be appended to the output directory name.
This is useful, if several rounds of testing or different parameter choices are explored. To tag the
output directory with Round1 you would use:

spladder test ... --out-tag Round1 ...

The test mode is capable of generating several summary plots for diagnosing issues and getting a
better understanding of the data being tested. Per default, the plots are generated in png format,
but other formats such as pdf or eps can be chosen as well. Per default, the diagnose plots are
switched off. To generate them, for instance in pdf format, you would use:

spladder test ... --diagnose-plots --plot-format pdf ...

If several compute cores are available, the computation of the testing can be accelerated by
allowing parallel access. If 4 cores should be used:

spladder test ... --parallel 4 ...

The viz mode

The purpose of this mode is to generate visual overviews of splicing graphs and events and the
associated coverage available in the underlying RNA-Seq samples.

General organisation

In general, the plots are organized as individual tracks, which can be stacked to visualize several
sources of information jointly. Thereby, the order, number and repetition of tracks can be defined
by the user. This allows for the generation of simple overview plots as well as for more complex
multi-track visualizations. If more than one track is present, all tracks share the same joint
coordinate system on the x axis.

To determine which genomic range is plotted, all elements provided in --tracks are considered
and a region including all of them is generated. This logic can be overruled using the --range
parameter to specify a specific range. However, there are also data track elements that do not
necessarily carry any range information (such as a coverage track). In this case the --range
argument would be required. In the following, we will first explain the definition of tracks in more
detail and will then provide some information on how to define a specific range.

Data tracks

This parameter is concerned with defining which data tracks should be visualized in the plot and in
which order. The general syntax for specific a data track is as follows:

spladder viz --track TYPE [TYPE_INFO [TYPE_INFO ...]]

Here, TYPE describes one of the following possibilities (where TYPE_INFO is specifically
defined for each type):

	splicegraph shows the structure of the splicing graph for each of the given genes. If no
TYPE_INFO is provided, the gene(s) from the --range argument are used. To plot the
splicing graph for gene with ID gene1, one would use:

spladder viz --track splicegraph gene1

	transcript shows the structure of all annotated transcripts for each of the given genes.
If not TYPE_INFO is provided, the gene(s) from the --range argument are used. To plot
the splicing graph for gene with ID gene1, one would use:

spladder viz --track transcript gene1

	event shows the structure of the given events, where each event can be specified by its
ID. For instance to show the structure of events exon_skip_2 and alt_3prime_5, one can
use:

spladder viz --track event exon_skip_2 alt_3prime_5

If not a specific event ID is given but only the event type, all events of that type
for the genes given in --range are shown. So to show all exon_skip events of gene
gene1, the correct call would be:

spladder viz --range gene gene1 --track event exon_skip

If all events of a given gene should be shown, then one can use the special keyword any to
achieve this:

spladder viz --range gene gene1 --track event any

	coverage shows the coverage information in the given range for all samples provided in
TYPE_INFO. To show coverage for samples alignment1.bam and alignment2.bam, one would
use:

spladder viz --track coverage alignment1.bam alignment2.bam

If the coverages of both files should be added up, one can also define them as a group:

spladder viz --track coverage alignment1.bam,alignment2.bam

Sometimes it is useful to assign descriptive labels to single or multiple samples. Given the
samples alignment1.bam - alignment4.bam, which can be separated into groups wildtype and
mutant, respectively, one can use these labels in the plot as follows:

spladder viz --track coverage \
 wildtype:alignment1.bam,alignment2.bam \
 mutant:alignment3.bam,alignment4.bam

	segments shows the coverage information in the given range as internally used by SplAdder
in the splicing graph, quantifying each exonic segment. The usage is analog to --coverage.

Order of multiple tracks

The order of the tracks is determined by the order they are provided in at the command line. This is
true for both the order of keywords within a single --track parameter, as well as for the order
of multiple --track parameters.

Let us consider the following example:

spladder viz --range gene gene1 \
 --track coverage,segments alignment1.bam,alignment2.bam \
 --track event any \
 --track splicegraph \
 --track event exon_skip

This plot will have five tracks: coverage, segments, events (any), splicing graph, events (only
exon skips). This means, even the same track can be plotted multiple times, if requested.

Plotting range

Using the --range parameter, the user determines exactly which genomic range is to be considered
for plotting the data tracks. This information can be provided as coordinates or the ID information
of one or many elements. The usage of --range overrules any range determined based on the
elements given via --tracks. The syntax thereby is as follows:

spladder viz --range TYPE TYPE_INFO [TYPE_INFO ...]

Here, TYPE describes one of the following possibilities (where TYPE_INFO is specifically
defined for each type):

	gene allows for providing at least one gene ID to be considered. If multiple genes should
be used, just list them after the gene keyword:

spladder viz --range gene geneID1 geneID2

	event allows for providing at least one event ID to be considered. If multiple events
should be used, just list them after the event keyword:

spladder viz --range event eventID1 eventID2

	coordinate allows for specifying a coordinate range to be used. Here, the type info
contains the list of coordinates to be used. As all ranges will be combined into a joint range
eventually, there is little use in providing several coordinate ranges, as the union would be
taken. For specifying the genome range of positions 100000 to 101000 on chr1, one would
specify:

spladder viz --range coordinate chr1 100000 101000

Note

The --range parameter can be used multiple times to combine several ranges. Please note that all provided ranges will be combined into a joint range including all other ranges before plotting. Also note that plotting ranges on different chromosomes is currently not supported as well as plotting ranges exceeding a total length of 1 000 000 bases.

Output names and formats

The user has to choose an output file name for each plot generated. This is specified as the
basename of the output file, not containing the output directory or the file ending (which is chosen
based on the format). The relevant parameter for this is --outbase (or short -O). The
default format of the plots is pdf, but any format supported by Matplotlib can be used. The
following two calls for using the output basename mytest and the format png are equivalent:

spladder viz ... --outbase mytest --format png ...
spladder viz ... -O mytest --format png ...

Please note that when using the special plotting mode --test and providing a test directory with
--testdir (see below), the plots are not placed in the SplAdder output directory but in the
given test directory.

Plotting test results

For visualizing events based on the outcome of the testing mode, there is a special track mode
available, which is called --test. In principle it works as the other tracks but follows a
specific syntax of its elements. There is a default set of 2 tracks that is generated using this
option: an event track showing the event of interest and a segements track showing the
quantification of segments used for the test for each of the two groups. The general structure is:

--test TESTCASE EVENT_TYPE TOP_K

While any of the elements is optional, the order is important and elements can only be omitted at
the end but not in the middle.

Depending on how the groups are named in testing mode, the output can be found in different
subdirectories. So if you groups were WT and MUT, your output name used by SplAdder would be
testing_WT_vs_MUT. However, if you did not use any group names, you can just use default.
Following are two examples for using the default and the specific group mode, respectively:

spladder viz ... --test default ...
spladder viz ... --test testing_WT_vs_MUT ...

The EVENT_TYPE specifies the test result of which event type should be considered. For each of the
k top events, a separate plot will be generated. You can comma-separate multiple event types or
write any, for all event types. Here two examples for plotting exon skips and intron retentions or
any event, respectively:

spladder viz ... --test default exon_skip,intron_retention ...
spladder viz ... --test default any

Lastly, the user can specify the number of top events (following the ranking in the testing result
file) that should be plotted. If the value is omitted, the default of 1 is used. To plot for
instance the top 5 exon skip events, one would use:

spladder viz ... --test default exon_skip 5

This will create 5 separate plots. The output name will have descriptive suffixes, to tell them
apart.

It can happen that the output for testing with SplAdder was written into a user-defined directory
and not into the default SplAdder output directory. In this case, the directory can be specified
using --testdir. For instance, if the test results can be found in mytestingdir, the SplAdder
call would need to be adapted as follows:

spladder viz ... --test default exon_skip 5 --testdir mytestingdir

As already noted earlier, this will also influence where the plots for the test are placed. For the
above example, all plots will be written to mytestingdir/plots/.

Note

If in addition to --test further tracks are also defined with --track, then each of the tracks is added to each of the plots generated for the test results.

Use on large cohorts

While SplAdder is often run on a smaller set of samples, it can also be applied to larger cohorts
containing hundreds or thousands of samples. In this setting, it is often advisable to distribute
the computation over a high-performance compute cluster and use some workflow management framework
(such as Snakemake [https://snakemake.readthedocs.io/en/stable/], Nextflow [https://www.nextflow.io/], or even bash) to coordinate the individual steps.

In the following, we will provide a short overview on how the computation of splicing graphs and
their quantification can be split up into individual parts, so they can be run independently. Please
note, that the output directory for the whole computation is project specific and stays the same for
all (even parallel) runs. SplAdder will not re-compute existing files and when called on different
input files, name the outputs accordingly.

The process can be separated into four subsequent logical steps:

	Single graphs: Creating an individual splicing graph per input sample

	Merged graph: Merging all individual graphs into a joint graph representation

	Quantification: Quantifying edges and nodes in the joint graph on each individual input sample

	Event Calling: Calling events (optionally perform testing) on the joint, quantified graph.

For the description of the following steps, we will create a small hypothetical setup of samples,
that will be used throughout all commands. Assume that we have a cohort of 10 samples S1 to S10.
The aligned (and indexed) bam files for the samples are available as S1.bam … S10.bam. We
are operating on a given annotation file annotation.gtf and our SplAdder project directory that
will hold all results will be spladder_out.

We will use simple bash commands to emulate the distribution of individual tasks. Please note
that the code as stated here, would just sequentially compute all single tasks and not generate any
parallelization benefit. For this to materialize, you would need to submit the individual tasks to a
compute cluster or similar. (If you have a machine with many cores available, you could also
trivially parallelize by running several tasks in the background simultaneously.)

1. Single graphs

In this first step, we will generate a splicing graph for each input sample.

Note

In general a splicing graph is generated per gene. We will abstract from this here and
only describe how the graphs will be treated across samples. This implicitly means that
this is done per gene.

For each of the given input samples Si, we invoke the splicing graph generation separately:

for i in $(seq 1 10)
do
 spladder build -o spladder_out \
 -a annotation.gtf \
 -b S${i}.bam \
 --merge-strat single \
 --no-extract-ase
done

This will create an individual splicing graph in spladder_out/spladder for each sample. Please
note that we added the --no-extract-ase option here. This is to prevent SplAdder from
automatically proceeding as is done by default in the smaller cohort analyses. With this option
present, we gain a more fine-grained controlled over the graph building process. This option will
also be present in the subsequent steps.

2. Merged graph

As a subsequent step, we now need to integrate the graphs across samples, to form one merged
splicing graph (per gene). We can just invoke SplAdder again on the same output directory now using
a different merging strategy:

spladder build -o spladder_out \
 -a annotation.gtf \
 -b S1.bam,S2.bam,S3.bam,S4.bam,S5.bam,S6.bam,S7.bam,S8.bam,S9.bam,S10.bam \
 --merge-strat merge_graphs \
 --no-extract-ase

Please note that now all alignment files of the cohort need to be provided. For larger cohorts it is
useful to collect all alignment files in a separate files, e.g. alignments.txt. Then the merging
step could also be invoked as follows:

spladder build -o spladder_out \
 -a annotation.gtf \
 -b alignments.txt \
 --merge-strat merge_graphs \
 --no-extract-ase

3. Quantification

Having the merged graph at hand, we can now proceed to quantifying nodes and edges of the graph
based on the alignment data. Each quantification will be done independently:

for i in $(seq 1 10)
do
 spladder build -o spladder_out -a annotation.gtf -b S${i}.bam \
 --merge-strat merge_graphs \
 --no-extract-ase \
 --quantify-graph \
 --qmode single
done

Please note that now the merging strategy is still merge_graphs, as we are quantifying the
merged graph and not the individual sample graphs. Also note that we have added the --qmode
single option.

As a second step to this phase, we need to collect the individual quantifications and aggregate them
in a joint database:

spladder build -o spladder_out \
 -a annotation.gtf \
 -b S1.bam,S2.bam,S3.bam,S4.bam,S5.bam,S6.bam,S7.bam,S8.bam,S9.bam,S10.bam \
 --merge-strat merge_graphs \
 --no-extract-ase \
 --quantify-graph \
 --qmode collect

4. Event Calling

Now one can proceed analog to the analysis of smaller cohorts. The joint graph is fully quantified
and we can move on to use it for downstream analyses, for instance to extract exon skipping events:

spladder build -o spladder_out \
 -a annotation.gtf \
 -b S1.bam,S2.bam,S3.bam,S4.bam,S5.bam,S6.bam,S7.bam,S8.bam,S9.bam,S10.bam
 --event-types exon_skip

In the above call we have omitted the --no-extract-ase option and SplAdder will automatically
proceed to this step. As all the intermediate quantification steps are already done, no step will be
carried out twice.

General Notes

When I/O is an issue, SplAdder has the option to generate a compressed summary for each input
alignment file. The information contained in that summary is comparable to a wiggle file but has
also information on the introns. Using this format will need some additional disk space, but allows
SplAdder to perform quantification and querying of intron coverage much more efficiently. You can
switch on the use of alignment summaries by:

spladder build ... --sparse-bam ...

File formats

Input Files – build mode

Annotation Files

SplAdder accepts two different formats for annotation files: GTF and GFF. It will automatically
detect the format from the file name ending, so please make sure that your annotation ends with
either gtf or gff.
Most sources for genome annotation provide their files in one of these two formats. If you would
like to generate your own annotation files, please follow the respective specifications:

	GTF:

	ensembl [http://www.ensembl.org/info/website/upload/gff.html]

	GFF:

	broad [http://www.broadinstitute.org/annotation/argo/help/gff3.html], ucsc [http://genome.ucsc.edu/FAQ/FAQformat.html#format3]

Alignment Files

All alignment files are expected to be in BAM format, following the SAM format specification [https://samtools.github.io/hts-specs/SAMv1.pdf]. We
have successfully tested SplAdder with the following aligners:
- STAR [https://github.com/alexdobin/STAR]
- PALMapper [http://www.raetschlab.org/suppl/palmapper/genomemapper-qpalma]
- TopHat [https://ccb.jhu.edu/software/tophat/index.shtml]

Output Files – build mode

SplAdder produces a variety of different output files. Here we will mainly discuss files that are
aimed at the user and omit intermediate files that mainly necessary for internal processes of
SplAdder. Most of the latter will be stored in the spladder subdirectory in the output
directory.

After completing a SplAdder run, you will find several different output files in the output
directory. Following, we will describe each file type.

Annotation Files in GFF3 Format

These files have the general pattern
merge_graphs_<event_type>_C<confidence_level>.confirmed.gff3 and contain the events that have
been detected by SplAdder. Each event is shown as a mini gene consisting of two different isoforms.
If instance an exon skip would be described as:

##gff-version 3
Chr1 exon_skip gene 7616027 7616726 . + . ID=exon_skip.1;GeneName="AT1G21690"
Chr1 exon_skip mRNA 7616027 7616726 . + . ID=exon_skip.1_iso1;Parent=exon_skip.1;GeneName="AT1G21690"
Chr1 exon_skip exon 7616027 7616107 . + . Parent=exon_skip.1_iso1
Chr1 exon_skip exon 7616603 7616726 . + . Parent=exon_skip.1_iso1
Chr1 exon_skip mRNA 7616027 7616726 . + . ID=exon_skip.1_iso2;Parent=exon_skip.1;GeneName="AT1G21690"
Chr1 exon_skip exon 7616027 7616107 . + . Parent=exon_skip.1_iso2
Chr1 exon_skip exon 7616266 7616332 . + . Parent=exon_skip.1_iso2
Chr1 exon_skip exon 7616603 7616726 . + . Parent=exon_skip.1_iso2

For a definition of the different columns, please refer to one of the available GFF3 specifications
at ensembl [http://www.ensembl.org/info/website/upload/gff.html] or ucsc [http://genome.ucsc.edu/FAQ/FAQformat.html#format3]. This file will allow you to display the events in a genome viewer such as
UCSC Genome Browser [https://genome.ucsc.edu/cgi-bin/hgGateway], IGV [http://www.broadinstitute.org/igv/] or GBrowse [http://gmod.org/wiki/GBrowse].

Event Files in HDF5 Format

The event files contain all relevant event information and are stored in the hierarchical data
format HDF5 [https://www.hdfgroup.org/HDF5/], allowing for efficient query, addition of data and interoperability between
different platforms and languages.
You can easily peek into the content of a hdf5 file:

$> h5ls -r merge_graphs_exon_skip_C3.counts.hdf5

/ Group
/conf_idx Dataset {1}
/confirmed Dataset {2}
/event_counts Dataset {4, 7, 2}
/event_features Dataset {7}
/event_pos Dataset {2, 6}
/gene_chr Dataset {1}
/gene_idx Dataset {2}
/gene_names Dataset {1}
/gene_pos Dataset {1, 2}
/gene_strand Dataset {1}
/num_verified Dataset {4, 2}
/iso1 Dataset {4, 2}
/iso2 Dataset {4, 2}
/psi Dataset {4, 2}
/samples Dataset {4}
/strains Soft Link {/samples}
/verified Dataset {4, 4, 2}

This example lists the contents of a hypothetical exon_skip event hdf5 file, containing the
information over 2 exon skips found in a cohort of 4 samples. The
tree that is shown looks a little bit like a file system tree and this is also the best analogy to
how the file is organized. Directories in the file system would correspond to groups in hdf5 and
files in file system to datasets in hdf5. Each group can contain more groups or datasets.

The event hdf5 is structured as follows:

	conf_idx: 0-based index set, containing the index of the events that are confirmed in the provided samples

	confirmed: binary array indicating for each event whether it is confirmed or not

	event_counts: 3-dimensional matrix (S x F x E) containing counts for each of the E events, F features and S samples

	event_features: list containing the description of the counted features per event type

	event_pos: position of all event exons encoded as start,stop pairs for each event (events are rows, coordinates are columns)

	gene_chr: chromosome for each gene in the gene list

	gene_idx: index that maps each event to a gene in the gene list (0-based)

	gene_names: gene name for each gene in the gene list

	gene_pos: position of each gene in the gene list encoded as start,stop pair

	gene_strand: strand for each gene in the gene list

	num_verified: 2-dimensional count matrix (V x E) containing the number of samples where
validation criterion V was met for event E

	iso1: 2-dimensional matrix (S x E) containing the number of spliced reads in sample S
supporting isoform 1 in event E

	iso2: 2-dimensional matrix (S x E) containing the number of spliced reads in sample S
supporting isoform 2 in event E:

	psi: 2-dimensional matrix (S x E) containing the percent spliced in (PSI) value for event E
in sample S. PSI is computed as iso1 / (iso1 + iso2)

	samples: names of the samples counted

	strains: names of the samples counted (kept for legacy)

	verified: 3-dimensional bool matrix (S x V x E) indicating whether validation criterion V for
event E was met in sample S

Naming of Features

The naming of features follows a simple logic utilizing the numbering of exon segments as shown in the below
image. The numbering follows genomic coordinates. That is the below image shows the positive strand.
For the negative strand the numbering would need to be reversed. For instance to count the number of
spliced alignments that confirm the connection of exon segments e1 and e3 in an exon skip, the
corresponding feature name would be e1e3_conf.

[image: Alternative event types and exon segment numbering]
The below list details the event features for each of the supported event types:

	
	features alt3_prime / alt_5prime:

	
	valid: contains a 1 if the event is valid and 0 otherwise

	e1_cov: mean coverage of the first constant exon segment in the event

	e2_cov: mean coverage of the exoni segment between the two alternative splice sites

	e3_cov: mean coverage of the second constant exon segment in the event

	e1e3_conf: number of spliced alignments spanning the longer intron

	e2_conf: number of spliced alignments spanning the shorter intron

	
	features exon_skip:

	
	valid: contains a 1 if the event is valid and 0 otherwise

	e1_cov: mean coverage of the left flanking exon (in genomic coordinates, ignoring strand)

	e2_cov: mean coverage of the cassette exon

	e3_cov: mean coverage of the right flanking exon (in genomic coordinates, ignoring strand)

	e1e2_conf: number of spliced alignments spanning from left flanking to cassette exon

	e2e3_conf: number of spliced alignments spanning from cassette to right flanking exon

	e1e3_conf: number of spliced alignments spanning from left flanking to right flanking exon

	
	features intron_retention:

	
	valid: contains a 1 if the event is valid and 0 otherwise

	e1_cov: mean coverage of the left flanking exon (in genomic coordinates, ignoring strand)

	e2_cov: mean coverage of the retained intron

	e3_cov: mean coverage of the right flanking exon (in genomic coordinates, ignoring strand)

	e1e3_conf: number of spliced alignments spanning the intron

	e2_cov_region: fraction of positions in the intron that have a coverage > 0

	
	features mult_exon_skip:

	
	valid: contains a 1 if the event is valid and 0 otherwise

	e1_cov: mean coverage of the left flanking exon (in genomic coordinates, ignoring strand)

	e2_cov: mean coverage over all skipped exons

	e3_cov: mean coverage of the right flanking exon (in genomic coordinates, ignoring strand)

	e1e2_conf: number of spliced alignments spanning from left flanking to cassette exon

	e2e3_conf: number of spliced alignments spanning from cassette to right flanking exon

	e1e3_conf: number of spliced alignments spanning from left flanking to right flanking exon

	sum_e2_conf: number of spliced alignments spanning any of the introns between neighboring skipped exons

	num_e2: number of skipped exons

	len_e2: cumulative length of skipped exons

	
	features mutex_exons:

	
	valid: contains a 1 if the event is valid and 0 otherwise

	e1_cov: mean coverage of the left flanking exon (in genomic coordinates, ignoring strand)

	e2_cov: mean coverage of the first skipped exon (first defined by genomic coordinates)

	e3_cov: mean coverage of the second skipped exon (second defined by genomic coordinates)

	e4_cov: mean coverage of the right flanking exon (in genomic coordinates, ignoring strand)

	e1e2_conf: number of spliced alignments spanning from left flanking to first exon

	e2e4_conf: number of spliced alignments spanning from left flanking to second exon

	e1e3_conf: number of spliced alignments spanning from first to right flanking exon

	e3e4_conf: number of spliced alignments spanning from second to right flanking exon

Validation Criteria

For each event type, SplAdder uses different empirical validation criteria to determine, whether the
called event is valid in a given sample. The overview of that information is provided in the
verified and num_verified fields in the HDF5 count file for each event type. This data also
forms the basis for deciding on the list of confirmed events. An event is kept as confirmed, if
each of the validation criteria is fulfilled in at least one sample. (This does not necessarily mean
it is the same sample for different criteria, as the aggregated counts from num_verified are
used for this decision.) The indices of all confirmed events are indicated in the conf_idx array
of the HDF5 count file for each event type.

Following, we provide a list of the validation criteria per event type:

	
	Multiple Exon Skip

	
	exon coordinates are valid (>= 0 && start < stop && non-overlapping) & skipped exon coverage >= FACTOR * mean(pre, after)

	inclusion count first intron >= threshold

	inclusion count last intron >= threshold

	avg inclusion count inner exons >= threshold

	skip count >= threshold

	
	Intron Retention

	
	counts meet criteria for min_retention_cov, min_retention_region and min_retetion_rel_cov

	min_non_retention_count >= threshold

	
	Exon Skip

	
	coverage of skipped exon is >= than FACTOR * mean(pre, after)

	inclusion count of first intron >= threshold

	inclusion count of second intron >= threshold

	skip count of exon >= threshold

	
	Alt 3/5 Prime

	
	coverage of diff region is at least FACTOR * coverage constant region

	both alternative introns are >= threshold

	
	Mutex Exons

	
	coverage of first alt exon is >= than FACTOR times average of pre and after

	coverage of second alt exon is >= than FACTOR times average of pre and after

	both introns neighboring first alt exon are confirmed >= threshold

	both introns neighboring second alt exon are confirmed >= threshold

Event Files in TXT Format

Event files in txt format contain essentially the same information as the HDF5 files in a tab
delimited column format with one line per event and the following entries per line:

1: chromosome of the event
2: strand of the event
3: unique event_id
4: name of gene the event is located in
5-5+n: start and stop coordinates of the event exons
5+n and following: count values for each of the samples with the following layout (features are event type specific as defined above for HDF5 files:
 <sample1>:<feature1>
 <sample1>:<feature2>
 <sample1>:<feature3>
 ...
 <sample2>:<feature1>
 ...

The features defined per sample are the same as in the HDF5 files defined above. The number of
features thereby depends on the event type.

Files in PICKLE Format

These files are for internal usage only and can be ignored.

Output Files – test mode

In the testing mode, SplAdder generates both tabulated output as well as some images for diagnosing
properties of the data. The latter is still in beta mode. Please report an issue on the tracker [https://github.com/ratschlab/spladder/issues] in case you should encounter any problems.

Files in TXT Format

The results of the test mode can be generally found in the testing subdirectory of the
SplAdder output folder. For each event type {ET} and confidence level {C}, several different
output files in text format are generated:

	test_results_C{C}_{ET}.tsv

	test_results_C{C}_{ET}.gene_unique.tsv

	test_results_extended_C{C}_{ET}.tsv

In the following, we will provide more description for each of the files.

Basic test output per event

The basic outputs of testing are stored in the file test_results_C{C}_{ET}.tsv. In addition to
the header, the file contains one line per tested event. It contains 15 columns carrying the
following information:

	event_id – ID of the event

	chrm – event location: chromosome/contig

	exon_pos – event location: exon position (start-stop:start-stop:…)

	alt_usage – list of binary values, indicating alternative usage of each exon (same order as in exon_pos)

	gene_id – ID of gene

	gene_name – Name of gene

	p_val – raw p-value from differential test

	p_val_adj – adjusted p-value from differential test

	dPSI – delta PSI (absolute difference between mean-PSI of group A and mean-PSI of group B)

	mean_event_count_A – mean support for tested splice path in group A

	mean_event_count_B – mean support for tested splice path in group B

	log2FC_event_count – log2 fold-change of mean support group A vs group B

	mean_gene_exp_A – mean gene expression of gene in group A

	mean_gene_exp_B – mean gene expression of gene in group B

	log2FC_gene_exp – log2 fold-change of gene expression group A vs group B

Basic test output per gene
The file test_results_C{C}_{ET}.gene_unique.tsv contains essentially the same information as the
basic test output per event, just made unique per gene. That is, if a gene contains multiple events
of the same type, here only the most significant one is reported. The columns are the same.

Extended test output per event
The file test_results_extended_C{C}_{ET}.tsv contains additional output for each tested event
and can be used for debugging purposes. The number of columns is variable and depends on the size of
the input groups used for testing. For the following explanation, we assume that input group A has
size 2 and input group B has size 3. The first 15 columns are identical to the basic event
output file. The additional columns are as follows:

	event_count:group_A_sample1 – support for tested splice path in group A sample 1

	event_count:group_A_sample2 – support for tested splice path in group A sample 2

	event_count:group_B_sample1 – support for tested splice path in group B sample 1

	event_count:group_B_sample2 – support for tested splice path in group B sample 2

	event_count:group_B_sample3 – support for tested splice path in group B sample 3

	disp_raw – raw dispersion estimate for the tested event

	disp_adj – corrected dispersion estimate for the tested event

Diagnose Plots

The testing mode can generate some diagnose plots (via --diagnose-plots) that can help you
assess the data you are looking at. These plots are still in beta mode and might change in future
versions of SplAdder.

The plots reside in the SplAdder output directory in the folder testing/plots. Currently, the
following plots are available:

	Count distribution

	A plot showing the distribution of supporting counts and the gene expression over events per
tested group / condition. The plot is available over raw counts and over log10 transformed counts.

	MA plot

	A plot showing the log2 fold-change of each event over the mean normalized counts.

	Dispersion

	Three plots showing the raw dispersion estimate, the dispersion fit and the adjusted dispersion..

	QQ plot

	Quantile-quantile plots showing the distribution of p-values after testing over a uniform
distribution to check for over-inflation. Available for raw and adjusted p-values.

Files in PICKLE Format

Similar to build mode, these files are for internal usage only and can be ignored.

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to SplAdder’s documentation!

 		
 Installation

 		
 Install from PyPi

 		
 Install from source

 		
 General information

 		
 The SplAdder directory setup

 		
 SplAdder is a heuristic

 		
 Default parameters

 		
 Working with large datasets

 		
 Run modes

 		
 The build mode

 		
 1 Graph construction

 		
 2 Graph augmentation

 		
 3 Graph quantification

 		
 4 Event detection

 		
 The test mode

 		
 The viz mode

 		
 General organisation

 		
 Data tracks

 		
 Order of multiple tracks

 		
 Plotting range

 		
 Output names and formats

 		
 Plotting test results

 		
 Use on large cohorts

 		
 1. Single graphs

 		
 2. Merged graph

 		
 3. Quantification

 		
 4. Event Calling

 		
 General Notes

 		
 File formats

 		
 Input Files – build mode

 		
 Annotation Files

 		
 Alignment Files

 		
 Output Files – build mode

 		
 Annotation Files in GFF3 Format

 		
 Event Files in HDF5 Format

 		
 Event Files in TXT Format

 		
 Files in PICKLE Format

 		
 Output Files – test mode

 		
 Files in TXT Format

 		
 Diagnose Plots

 		
 Files in PICKLE Format

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/splice_events.png
Exon skip

I

e2

!:

Intron retention

Alternative 3’ splice site

Alternative 5’ splice site

el e2 e3
Multiple exon skip

_static/ajax-loader.gif

